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ABSTRACT

The objective of this dissertation is to solve an optimal deorbit guidance problem

given initial orbit and vehicle parameters as inputs. Currently, the problem is compu-

tationally intensive to solve and approximate methods such as impulsive maneuvers are

utilized. The problem is formulated as a fuel-optimal control problem that allows for a

variety of terminal conditions at entry interface (EI). Using optimal control methods,

the engine on time, engine off time as well as the direction of the thrust vector are solved

for a variety of circular and elliptic initial orbits. Single and multiple burn maneuvers for

both circular and elliptic orbits are explored. The J2 gravitational term is added as part

of the solution process. The numerical solution is obtained using an analytical multiple

shooting method. The results show promising potential of the proposed method and are

comparable to NASA’s Shuttle results.



www.manaraa.com

1

CHAPTER 1. Introduction

Changes in the world climate over the past ten or more years have led the United

States government to reevaluate the use and capability of their space-based assets. The

outcome is the Department of Defense’s Operational Responsive Space (ORS). More

specifically, Operational Responsive Space:

”Will provide an affordable capability to promptly, accurately, and deci-

sively position and operate national and military assets in and through space

and near space. ORS will be fully integrated and interoperable with current

and future architectures and provide space services and effects to war fight-

ers and other users. ORS is a vision for transforming future space and near

space operations, integration, and acquisition, all at a lower cost.” [1]

Operational Responsive Space gives rise to the need for performing space maneuvers

in time critical scenarios and other situations. One such space maneuver is deorbit.

Deorbit is the powered flight phase for an on-orbit vehicle during which a decelerating

maneuver is performed so that, after the engine cut-off, the vehicle will coast to a desired

set of conditions at the entry interface (EI). EI conditions permit the vehicle to have a

subsequent safe entry flight to the landing site. Currently, the timing and location of

deorbiting maneuvers are carefully planned on the ground. This process works for well

planned missions with ample lead time and ground support. However, given the current

desire of ORS, the capability of an on-board system to autonomously accomplish the

planning and execution of an optimal deorbit maneuver would be an enabling component
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for executing on-demand deorbit and entry missions. This work is concerned with the

deorbit guidance problem. This entails solving for the direction and magnitude of the

thrust vector for each second of flight to achieve the desired terminal, or EI, conditions.

With few exceptions, the problem is usually analyzed as an optimal orbital transfer

problem with the approximation of impulsive velocity change. In most cases, the con-

ditions at the EI are considered completely fixed. EI is defined as the point in which

deorbit ends and entry begins, at an altitude of 120 km. Figure 1.1 shows an exam-

ple deorbit maneuver with an impulsive deorbit boost. Generally, solving the deorbit

problem has meant determining the location of application of velocity impulse and the

velocity impulse vector of minimum magnitude to achieve necessary EI conditions. Space

vehicles today are low thrust vehicles, so accurately approximating the required deorbit

boost with an impulse is difficult [2].

Figure 1.1 Example impulsive deorbit maneuver
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NASA’s Space Shuttle is a low thrust vehicle that performs a finite time deorbit

burn, which depends on the orbit altitude and burn characteristics. Through numerical

analysis, the required values of velocity and flight path angle at EI are determined for

various values of the apogee altitude [3]. This data forms the desired targeting condition

of the deorbit burn. Specifically, in the guidance implementation the Shuttle targets a

linear relationship of flight path angle and velocity at EI [4]. The range to the target is

controlled by properly timing the burn [3].

An exact solution for the minimum energy deorbit solution for a specified entry path

angle and altitude is given in Ref. [5]. The best location of minimum deorbit boost

is apoapsis, for shallow entry path angle, and before or after apoapsis for shaper entry

path angles for unconstrained EI velocity [5]. The minimum energy and time deorbit

exact solution for a given entry path angle, altitude, and velocity is given in Ref. [6].

The required number of space vehicle orbits such that the landing site is lined up with

the entry orbit is also determined. This ensures that any required plane change is done

during entry flight. In Ref. [7] it is shown that an optimum deorbit altitude exists for a

minimum deboost requirement and specified entry path angle.

In Ref. [8], the co-planar single minimum-impulse deorbit problem is considered. The

problem of finding optimal deorbit position and impulse from a given initial elliptic orbit

is reduced to simultaneously solving two 4-th order polynomials given a specified entry

flight path angle and entry altitude. It is shown that for certain ranges of values of

semi-major axis and eccentricity, the optimal deorbit point is at a non-apoapsis location

of the initial orbit and a significant ∆V savings is achieved. The latter indicates that,

depending on the time of initiation of the deorbit maneuver, an optimal coast may be

called for before the deorbit burn of the engine. In Ref. [9], a prescribed functional

relationship (not necessarily linear) between the entry velocity and flight path angle is

allowed. Using Keplerian motion for non-powered flight on orbit and the single impulse

assumption, the solution of the problem is reduced to the solutions of two 6-th order
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polynomials. The most interesting findings in Ref. [9] include the demonstration that

significant savings in ∆V can be achieved by allowing non-fixed entry flight path angle

and velocity (but constrained by the given functional relationship for feasibility of entry

flight), and for certain ranges of semi-major axis and eccentricity, the optimal deorbit

point is at a non-apoapsis location of the initial orbit.

A hodograph method is used in Ref. [10] for solving the minimum-impulse deorbit

problem, including the Earth perturbation forces, under fixed transit and landing time

constraints, and assuming in-plane impulsive burns. The hodograph method is approxi-

mate but can be performed rapidly. In Ref. [2], a strategy for optimal deorbit maneuvers

including out-of-plane maneuvers is studied. The higher the altitude, the less likely an

impulse is to satisfy EI conditions so an iterative method is used with an impulse as

an initial guess, which is then corrected to give more accurate burn, is used. The J2

perturbation term of the orbit is shown to affect the final flight path angle and needs to

be considered for better results. The benefits of two-impulse deorbit maneuvers are also

discussed in Ref. [2].

For cases when multiple burns are beneficial, burn timing is crucial. For cases of

impulsive transfer, optimal switching in the problem of minimal fuel, time-free, impul-

sive plane transfer is studied in Ref. [11]. The complete solution to determine the

switching sequence (burn, coast, burn, etc.) is obtained by solving an 8-th degree alge-

braic equation. In [12], the optimal position of vehicle and direction of velocity impulse

are determined for the free time coplanar orbit transfer. The switching relations that

must be satisfied at the points where the impulse is applied in an optimal trajectory

are determined. The necessary conditions for when an additional impulse is required

along an optimal trajectory in a time fixed trajectory are given in Ref. [13]. Also,

cost reducing measures such as moving impulse location and altering initial and final

coasts are presented. In Ref. [14] the primer vector for optimal intercept with time

constraint is determined for impulsive maneuver. Then, based on the primer vector,
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rules are established to search for the optimal impulsive transfer if the one-impulse is

not optimal.

In both Ref. [15] and [16], the impulsive deorbit problem is solved together with the

entry flight problem. An approximate analytical solution for atmospheric trajectory is

used in Ref. [15]. The results of the orbital phase, transfer phase, and atmospheric phase

are then combined to iteratively search for an end-to-end trajectory with an optimal

impulsive, in-plane deorbit burn. A complete numerical solution is used in Ref. [16] to

study the deorbit mission of the X-38. The performance index investigated in Ref. [16]

is the entry flight portion, such as maximum crossrange and downrange, using a direct

optimization method. The X-38 deorbit targeting aims at an EI window determined by

the crossrange and downrange with Earth’s gravitational perturbations used. In treating

the deorbit and entry trajectory design problem together, the correct EI condition will

be obtained as a part of the solution. The EI condition will ensure the flyability of the

ensuing entry trajectory for the vehicle. A negative aspect of this method is that the

solution process is numerically intensive, and is not suitable for on-board applications.

This dissertation describes the development of an autonomous optimal deorbit guid-

ance algorithm. Given initial vehicle conditions of position, velocity, and initial orbit

parameters, the optimal deorbit guidance solution that meets the required terminal

conditions is determined for both initial circular and elliptic orbits. This includes de-

termining the engine on-time and off-time for the given number of finite time burns.

The number of burns is determined based on the initial orbit parameters of the vehi-

cle. The direction and magnitude of the thrust vector necessary to meet the required

EI conditions is determined for each second of flight. Also, it will be shown that the

optimal deorbit point from an elliptic orbit is not apoapsis. The numerical results are

in the same range as NASA’s Space Shuttle data. The effect of J2 on the EI conditions

of the vehicle are explored. More specifically, the effect of the addition of the J2 term

to the guidance solution and the closed loop simulation is determined. This work is
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arranged as follows: Chapter 2 gives a numerical overview and discussion of issues that

affect derobit. Chapter 3 gives a description of the problem formulation with specified

targeting conditions and a description of the algorithm. Numerical results and analysis

is presented in Chapter 4, 5, and 6 for both circular and elliptic orbits, assuming Kep-

lerian motion. Chapter 7 gives an overview of the effect the J2 term has on the deorbit

problem. Concluding remarks and a discussion of future work are given in Chapter 8.
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CHAPTER 2. Issues that Affect Deorbit

There are several issues that affect the execution of a deorbit maneuver. These in-

clude the timing of the burn, number of burns, and earth’s gravitational force. The ma-

jority of previous work has been done assuming impulsive burns and Keplerian motion.

For a first round approximation or mission planning, these assumptions are acceptable

but for use in an onboard system in real time, these assumptions cannot be used to accu-

rately solve the guidance problem. The engines on space vehicles today are not capable

of producing enough thrust instantaneously to enable an idealistic deorbit maneuver.

The flight time of the deorbit maneuver can involve long periods of coasting in which

the oblateness of the earth has a profound influence and must be taken into account.

The amount of fuel used must be minimized and for some cases of orbit altitude, this

is done using a multiple burn maneuver rather than a single burn maneuver. Out of

plane maneuvers require a great deal of fuel, so the timing of the burn must ensure that

any out of plane maneuver occurs in the atmospheric portion of reentry. The following

sections explore each of these issues in greater detail. Specifically, Section 1 reviews

impulsive burns, Section 2 defines the different advantages in multiple burn maneuvers,

Section 3 explores the effect of the J2 gravitational term, Section 4 discusses the timing

of the deorbit burn, and Section 5 gives an indepth review of previous work presented

in Ref. [8].



www.manaraa.com

8

2.1 Impulsive Burns

The deorbit impulse required to meet a given set of EI conditions has been examined

thoroughly in previous work. In Ref. [6], the required impulse to achieve specified entry

velocity Ve, flight path angle γe, and altitude hE is determined as follows: The angular

momentum of the descent orbit is

HD = (Re + he)Ve cos γe (2.1)

where Re is the radius of the earth. The descent orbit’s semi-major axis is

aD =
µre

2µ− reV 2
e

(2.2)

with µ as the earth’s gravitational constant and re = Re + he. After the impulsive

retrofire has been applied at original orbit altitude, h0, the velocity of the descent orbit

is

VD =

√
µ(

2

Re + h0

− 1

aD
) (2.3)

and the flight path angle is

γD = cos−1(
HD

(Re + h0)VD
). (2.4)

As shown in Figure 2.1, the impulse velocity is

∆V = (V 2
0 + V 2

D − 2V0VD cos ∆γ)
1
2 (2.5)

where V0 is the velocity of the vehicle on the original orbit and ∆γ = γD − γ0 where γ0

is the flight path angle of the vehicle on the original orbit. Figure 2.1 shows the impulse

required to leave the initial orbit and enter the descending orbit. The initial position of

the vehicle is denoted by R0. The direction of the impulse is called the thrust vector

direction parameter and is determined by

δ = sin−1(
VD sin ∆γ

∆V
). (2.6)
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Figure 2.1 Deorbit impulse from initial orbit with velocity V0

To find the time of the deorbit maneuver, the range covered must be determined. First

note that the eccentricty of the descending orbit is

eD =

√
1− pD

aD
(2.7)

and is related to the angular momentum through pD by

pD =
H2
D

µ
. (2.8)

The true anomaly, ΘD, of the vehicle on the descent orbit at the point of impulse

application comes from

cos ΘD =
pD − (Re + h0)

eD(Re + h0)
(2.9)

and

sin ΘD =
pD tan γD
eD(Re + h0)

(2.10)

yielding

ΘD = tan−1(
sin ΘD

cos ΘD

). (2.11)
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Similarly, the true anomaly, ΘE, at entry is

cos ΘE =
pD − (Re + he)

eD(Re + he)
(2.12)

and

sin ΘE =
pD tan γE
eD(Re + he)

(2.13)

yielding

ΘE = tan−1(
sin ΘE

cos ΘE

). (2.14)

The angular range from deorbit to entry is

ρ = ΘE −ΘD. (2.15)

The eccentric anomalies at deorbit and entry are as follows

sinED,E =

√
1− e2

D sin ΘD,E

1 + eD cos ΘD,E

(2.16)

and

cosED,E =
eD + cos ΘD,E

1 + eD cos ΘD,E

(2.17)

yielding

ED,E = tan−1(
sinED,E
cosED,E

). (2.18)

The time from deorbit to entry is

∆TE =
ME −MD√

µ
(aD)

3
2 (2.19)

where MD and ME are the mean anomalies at deorbit and entry

MD = ED − eD sinED (2.20)

ME = EE − eD sinEE. (2.21)

The ∆V determined above places the vehicle on a deorbit trajectory that will meet the

required EI conditions of velocity, altitude, and flight path angle after a flight time of
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Table 2.1 Results of survey of [6]

Initial Altitude (km) ∆V (km/s) δ (deg) ∆TE (sec)
6578 0.1655 -89.41 510
6588 0.1650 -87.36 3261
6598 0.1639 -85.28 3322
6608 0.1621 -83.15 3383
6618 0.1597 -80.93 3445
6628 0.1566 -78.58 3508
6638 0.1527 -76.07 3573

∆TE. A sample survey of this work with initial circular orbits ranging in altitude from

200 km to 260 km and EI conditions of: Ve = 7.87 km/s, he = 120 km, and γE = −1

degrees is conducted. These values are in the range of values the Shuttle would target.

The results of the survey are shown in Table 2.1. The time of flight is found using the

parameters of the descending orbit and the range the vehicle travels on the orbit. The

time of flight to EI increases as altitude increases but the impulse decreases.

For on-orbit maneuvers such as deorbit, the Space Shuttle relies on its Orbital Ma-

neuvering System (OMS), which consists of two engines, both capable of producing a

thrust of about 6000 lb. At the typical deorbit weight of the Shuttle, the thrust-to-weight

ratio by the OMS is only about 0.05 g. Using the rocket equation,

∆v = v∗ ln
m0

m
(2.22)

with v∗ = g0 · Isp, where g0 is gravity at Earth’s radius and Isp is specific impulse of

the engine, it is determined that the Shuttle is capable of producing a ∆V of at most

5.48× 10−4 km/sec [21]. Hence, to solve the guidance problem, an impulsive burn is not

useful and a finite time burn must be used. A typical burn for the Shuttle returning

from the International Space Station lasts anywhere from 160 to 200 seconds. For such

a case, while impulsive burn approximation may be reasonable for preliminary analysis,

more detailed analysis will have to include the effects of finite burn time. The farther

away from apogee the vehicle is during deorbit the more effective a finite time thrust
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is than an impulsive one. Also, if the altitude of the orbit is very shallow then a finite

time burn is necessary to ensure the proper flight path angle is achieved at EI [2].

2.2 Single versus Multiple Burns

A rendezvous maneuver is done with multiple burns, bringing about the question

of whether a multiple burn deorbit is more efficient than a single burn. The two burn

maneuver is as follows: retrograde maneuver as near to the apogee of the initial orbit as

possible and a second retrograde maneuver at the apogee of the second orbit as shown

in Figure 2.2. This involves a total orbit period of 1.5 for the deorbit maneuver. As

stated in Ref. [2], one advantage of multiple burns is that the duration of the burns is

shorter, so less fuel is used. There is also a higher likelihood that multiple burns will

yield less error of the total maneuver and recovery of lost opportunities at EI, such as

required flight path angle. It is shown in Ref. [2] that multiple burn maneuvers lead to

lower thrust durations, reduced fuel consumption, and greater maneuver time.

There are several disadvantages of using multiple burns. If fast deorbit and entry

is required, the multiple burn maneuver would not be optimal because of the length of

time it requires to execute the maneuver. Also, the second orbit of the maneuver is an

elliptic orbit, which permits no breakdown during the next orbit period. More than two

burns have been studied but no appreciable improvements are made over the two burn

maneuver.

2.3 J2 Perturbation

Ref. [2] showed that for deorbiting maneuvers, the J2 perturbation on a coasting orbit

must be taken into consideration for computation purposes. Mainly, J2 has a profound

effect on the flight path angle at EI. The flight path angle at EI is specified based on

vehicle requirements. For Shuttle type vehicles, a flight path angle of approximately −1



www.manaraa.com

13

Figure 2.2 Sample two burn maneuver

Table 2.2 Effects of J2–terms in the gravity on entry flight path angle

initial altitude (km) 2,409 2,210 2,061 1,862 1,664 1,465 1,267 1,069 871 673 475 277
fpa w/o J2 (deg) -1.057 -1.058 -1.052 -1.048 -1.044 -1.038 -1.036 -1.029 -1.024 -1.018 -1.011 -1.005
fpa with J2 (deg) -1.422 -1.413 -1.402 -1.389 -1.371 -1.353 -1.327 -1.300 -1.271 -1.234 -1.185 -1.101
percent error 34 33 33 32 31 30 28 26 24 21 17 9

degrees is desired, whereas for capsule type vehicles, a flight path angle of approximately

−6 degrees is desired. A numerical analysis comparing Keplerian motion and J2 and

higher order perturbed motion shows that for orbits ranging in altitude of 2500 km to

250 km, a significant difference in final flight path angle occurs given the same initial

angle. Table 2.2 shows the final results of both Keplerian and J2-terms perturbed orbits

with the same initial flight path angle of −1 degree.

From Table 2.2 it is clear that from the same initial deorbit condition, depending

on whether the J2 term is used in the numerical solutions, the EI flight path angle can
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differ as much as over 30% for higher initial orbits and about 10% percent for lower

orbits. Since the flight path angle is the most sensitive parameter at EI, it is imperative

that the guidance system take into account the higher order effects of the gravitational

field for accurate deorbit targeting, especially for deorbit missions from higher orbits.

The difference in magnitude between J2 and the next higher order term is 103. For this

reason, only J2 is used in modeling earth’s gravitational perturbation.

2.4 Timing of the Burn

Timing deorbit such that landing at a predetermined site is accomplished and mini-

mum fuel is burned is key to the problem. Generally, this part of the problem is solved by

modifying when the burn occurs and the length of the coast arc from the end of the burn

to EI. As the earth rotates, the landing site traces a circle in the Earth Centered Inertial

(ECI) coordinate frame and when the orbit plane has an inclination greater than the

latitude of the landing site, the orbit plane and landing site circle plane intersect as seen

in Figure 2.3. Two possible intersection points are determined on this intersection line

that coincide with an EI altitude of 120 km. Out of plane maneuvers have been shown

to be too expensive to complete during deorbit maneuvers. If a change in inclination

is needed, it is completed in the atmospheric portion of reentry. To ensure any plane

change occurs in the entry portion of return flight, one of these two intersection points

is targeted for EI. This may require the vehicle to orbit multiple times before burning

to ensure that the landing site will line up with one of the two intersection points when

the vehicle reaches EI.

Ref. [6] determines the number of orbits required by the vehicle so the targeted

landing site is impacted. The number of orbits is

n =
Ω0 −GHA0 + 2πm+ ∆λ− ωetD

ωeP0 − Ω̇
(2.23)
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Figure 2.3 Intersection of orbit plane with landing site

where Ω0 is the right ascension of the node at time zero, GHA0 is the Greenwich Hour

Angle of the vernal equinox at time zero, ωe is the earth’s rotation rate, m is the number

of days since time zero, and tD is the time from deorbit to impact. P0 is the nodal period

of revolution over an oblate earth found by

P0 =
2π
√
µ
a3/2(1− 3

2

J2R
2
e

a2
(
7 cos2 i− 1

4
)) (2.24)

where J2 is the J2 gravitational coefficient, Re is the radius of the earth, and a is the

semi-major axis of the orbit The approach from a southern direction gives

∆λ = sin−1(
tan latLS

tan i
) (2.25)

where i is the orbit inclination and latLS is latitude of the landing site. The approach

from the northern direction gives

∆λ = π − sin−1(
tan latLS

tan i
). (2.26)
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The nodal regression per revolution is determined by

Ω̇ = −3πJ2(
Re

p
)2 cos i (2.27)

where p is the semi-latus rectum.

If the vehicle allows for an in-plane range tolerance, σ, that can be absorbed during

entry then

n = n′ − ρ± σ (2.28)

where ρ is angular range of deorbit maneuver and n′ is

n′ = N +
1

2π
∆λ (2.29)

for southern or northern approaches and N is the integer number of revolutions. The

in-plane range tolerance varies from vehicle to vehicle and can span anywhere from

hundreds to thousands of kilometers. This is not a mathematically precise method but

can give an idea of the length of time for an initial coast before burn is activated.

After the initial coast time is estimated, when to burn must be determined. For orbit

changes, a colinear impulse is to be applied at perigee for maximum change in semi-major

axis [22]. The goal of the deorbit problem is not a maximum change in semi-major axis

but rather a change in orbit perigee. On a circular orbit, where neither perigee or

apogee is defined and the speed is constant, when to burn is determined by finding the

time such that the smallest burn time is required to meet EI conditions. For an elliptic

orbit this leads to an intuitive assumption that a colinear burn at apogee would yield

the best minimum impulse requirement. This result does not consider a constrained

velocity at EI. A sample apogee colinear burn is shown in Figure 2.4. However, Refs.

[8] and [9] show that considerable fuel savings may be achieved doing a nonapogee

maneuver given specific values of semi-major axis and eccentricity. Their approach

involves simultaneously solving a system of polynomials. The next section gives an in

depth review of the work completed in Refs. [8] and [9].
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Figure 2.4 Colinear burn at apogee of elliptic orbit

2.5 Optimal Impulsive Deorbit Burn from Elliptic Orbit

As stated earlier, the timing of the deorbit burn is crucial to achieving an optimal

solution for deorbit. In Ref. [8], an approach for finding the optimal deorbit position

and impulse is given for an initial elliptic geocentric orbit with specified entry flight

path angle and altitude criterion. This work is further generalized in Ref. [9], using a

similar approach but allowing for a functional relationship between reentry speed and

flight path angle. All work in these two references is done assuming Keplerian orbital

motion and in plane deorbit.

The following approach is presented in Ref. [8] to determine the minimum impulse

required for deorbit. The velocity impulse required to deorbit is

∆V = ṙE1 − ṙ1 (2.30)

where ṙ1 andṙE1 are the velocity vectors before and after the deorbit impulse. The
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velocity vectors may be rewritten as

ṙE1 = VE1 sin γE1U0 + VE1 cos γE1V0 (2.31)

ṙ1 = V1 sin γ1U0 + V1 cos γ1V0. (2.32)

The speeds before and after deorbit are V1 and VE1 with respective flight path angles

γ1 and γE1. U0 is a unit vector in the direction of position vector r1 and V0 is a unit

vector advanced in plane 90 degrees from U0 in the direction of motion. Because the

∆V is impulsive, position vectors r1 and rE1 are identical. Define ξ = V1 cos γ1 and

η = V1 sin γ1. The square of the velocity impulse may then be written as

∆V 2 = V 2
E1 + V 2

1 − 2ξVE1 cos γE1 − 2ηVE1 sin γE1. (2.33)

Utilizing the laws of conservation of angular momentum and energy, γE1 and VE1 are

related to reentry conditions, denoted by subscript E1, by

V 2
E1 = α + V 2

E2 (2.34)

VE1 cos γE1 = λVE2 (2.35)

where VE2 is the reentry velocity, α = 2µ(1/rE1 − 1/rE2) and λ = rE2/rE1 cos γE2.

Defining a new independent variable ζ = VE1 sin γE1, VE1 and VE2 may be rewritten as

V 2
E1 =

ζ2 − λ2α

1− λ2
(2.36)

V 2
E2 =

ζ2 − α
1− λ2

(2.37)

and

VE1 cos γE1 = λ

√
ζ2 − α
1− λ2

. (2.38)

Impulse velocity may then be written as

∆V 2 =
ζ2 − λ2α

1− λ2
− 2ξλ

√
ζ2 − α
1− λ2

− 2ηζ + V 2
1 . (2.39)
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Taking the partial derivative of the above equation with respect to ζ and setting it equal

to zero yields the following 4-th order polynomial

ζ4+ζ3(−2η(1−λ2))+ζ2(−α+η2(1−λ2)2−ξ2λ2(1−λ2))+ζ(2αη(1−λ2))+(−αη2(1−λ2)2) = 0.

(2.40)

The only roots of Eq. (2.40) to be considered are those that are real valued and for which

ζη ≥ 0. The condition ζη ≥ 0 requires the orbit transfer begin on a preapogee position on

reentry trajectory if deorbit maneuver takes place at a preapogee position on the initial

orbit and begin on a postapogee position on reentry trajectory if deorbit maneuver takes

place at a postapogee position on the initial orbit. The minimum impulse is the root

that meets the stated requirements and yields the smallest value for Eq. (2.39).

To find the optimal deorbit position, the partial derivative of Eq. (2.39) with respect

ν1 is taken. First substitute the following into Eq. (2.39)

ξ =
h

r1

(2.41)

η =

√
µ

p
e sin ν1 (2.42)

V 2
1 = µ(

2

r1

− 1

a
) (2.43)

r1 =
p

1 + e cos ν1

(2.44)

resulting in an equation with independent variables VE2 and ν1. Taking the partial

derivative with respect to ν1 and setting it equal to zero gives

∂∆V 2

∂ν1

= −4
e

p
sin ν1(µ− λhVE2)− 2η

∂ζ

∂ν1

− 2ζ

√
µ

p
e cos ν1 = 0. (2.45)

After substituting for VE2

V 2
E2 =

ζ2 − α
1− λ2

(2.46)

into (2.45) a 4-th order polynomial results:

ζ4 ((
ηr1λ

2 sin ν1

1− λ2
+ h cos ν1)2 − 4λ2h2 sin2 ν1

1− λ2
) + ζ3(4µ sin ν1(

ηr1λ
2 sin ν1

1− λ2
+ h cos ν1))
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+ ζ2(4µ2 sin2 ν1 − 2(
ηr1λ

2 sin ν1

1− λ2
+ h cos ν1)(ηµ sin ν1 +

ηαr1λ
2 sin ν1

1− λ2
) +

4αλ2h2 sin2 ν1

1− λ2
)

+ ζ(−4µη sin2 ν1(µ+
αr1λ

2

1− λ2
)) + (η2 sin2 ν1(µ

αr1λ
2

1− λ2
)2) = 0. (2.47)

Solving Eqns. (2.40) and (2.47) simultaneously for ν1 and VE2 yields the minimum im-

pulse and optimal position for deorbit. The minimum impulse and position is symmetric

about apogee on the elliptical orbit.

The follow-on work to Ref. [8] is presented in Ref. [9] and takes into consideration

a functional relationship between reentry speed VE2 and reentry flight path angle γE2 of

the form

cos γE2 = Γ(VE2). (2.48)

As with the previous work, the following involves impulsive, in-plane motion. According

to the laws of conservation of angular momentum and energy and using the relationship

between flight path angle and velocity at reentry, the impulsive velocity vector is

∆V = (ζ − η)U0 + (
r2

r1

VE2Γ(VE2)− ξ)V0 (2.49)

where U0 and V0 are the same as defined above, r1 and r2 are the deorbit and reentry

radii, ξ and η are the same as previously defined, and

ζ2 = α + V 2
E2(1− r2

2

r2
1

Γ(VE2)2) (2.50)

with α = 2µ( 1
r1
− 1

r2
). The impulsive velocity is the absolute value of ∆V, or

∆V 2 = α + V 2
E2 + V 2

1 −
2ξr2VE2Γ(VE2)

r1

− 2ηζ (2.51)

where ζ is the value of Eq. (2.50) that minimizes ∆V 2. Using Keplerian motion equa-

tions, ∆V 2 may be put in terms of ν1. Taking the partial derivative of ∆V with respect

to ν1 and VE2 gives the following pair of 6-th order polynomials:

Σ6
n=0An(VE2) cosn ν1 = 0 (2.52)
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Σ6
n=0Bn(VE2) cosn ν1 = 0 (2.53)

where

A0 = β7β
2
1 − β2

4

A1 = 2β7β1β2 + β8β
2
1 − 2β4β5

A2 = β7β
2
2 + 2β7β1β3 + 2β8β1β2 + β9β

2
1 + β2

4 − β2
5 − 2β4β6

A3 = 2β7β2β3 + β8β
2
2 + 2β8β1β3 + 2β9β1β2 − 2β5β6 + 2β4β5

A4 = β7β
2
3 + 2β8β2β3 + β9β

2
2 + 2β9β1β3 + β2

5 − β2
6 + 2β4β6

A5 = β8β
2
3 + 2β9β2β3 + 2β5β6

A6 = β9β
2
3 + β2

6

B0 = β7β
2
10 − β2

8

B1 = 2β7β10β11 + β8β
2
10 − 4β8(β9 − β7)

B2 = β7(β2
11 − β2

10) + 2β8β10β11 + β9β
2
10 − 4(β9 − β7)2 + 6β2

8

B3 = −2β7β10β11 + β8(β2
11 − β2

10) + 2β9β10β11 + 20β8β9 − 12β7β8

B4 = −β7β
2
11 − 2β8β10β11 + β9(β2

11 − β2
10)− 9β2

8 + 16β9(β9 − β7)

B5 = −β8β
2
11 − 2β9β10β11 − 24β8β9

B6 = −β9β
2
11 − 16β2

9

in which

β1 = VE2 −
hr2ψ

p2

β2 = −2hr2ψe

p2

β3 = −hr2ψe
2

p2

β4 =

√
µ

p
e(VE2 −

r2
2ΓVE2ψ

p2
)

β5 = −2

√
µ

p

e2r2
2ΓVE2ψ

p2
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β6 = −
√
µ

p

e3r2
2ΓVE2ψ

p2

β7 =
2µ

p
− 2µ

r2

+ V 2
E2(1− r2

2Γ2

p2
)

β8 =
2µe

p
− 2V 2

E2r
2
2Γ2e

p2

β9 = −V
2
E2r

2
2Γ2e2

p2

β10 =
4

h
(µ− r2hVE2Γ

p
)

β11 = −4r2VE2Γe

p

with ψ = Γ+ dΓ
dVE2

VE2 and h =
√
µp. Solving both 6-th order polynomials simultaneously

yields the optimal deorbit position.

Using the polynomials presented in Ref. [8], a numerical survey using Eq. (2.40)

determined that, for certain values of periapsis altitude and entry flight path angle,

non-apoapsis deorbit yields a significant savings in ∆V . The periapsis altitude is ranged

from 150 to 1050 km, eccentricity is ranged from .001 to .015, and entry flight path angle

spans from −1 to −8 degrees. For shallow entry flight path angles, less than 4 degrees,

an apoapsis deorbit yielded minimum required ∆V for the different periapsis altitudes

and eccentricities. For high periapsis altitude orbits greater than 400 km, the minimum

∆V deorbit was at the apoapsis.

Figure 2.5 shows that for cases of low orbit periapsis altitude and eccentricity, at

entry flight path angles from −5.5 to −7.5 degrees, a non-apoapsis deorbit position is

optimal. The variation of non-apoapsis deorbit with relation to entry flight path angle

at a constant altitude is shown in Figure 2.6. The steeper the entry flight path angle at

low altitude, the more likely a non-apoapsis deorbit is optimal.

The savings in ∆V of the non-apoapsis deorbit is presented in Figure 2.7. An ap-

preciably savings is yielded in the low periapsis altitude cases of 150 and 250 km for

entry flight path angle values from −5.5 to −7.5 degrees. Given a constant entry flight



www.manaraa.com

23

path angle of −6.5 degrees, Figure 2.8 shows how the deorbit velocity varies with orbit

periapsis altitude along specified eccentricities. At low periapsis altitude, low eccentric-

ity orbits and steep entry flight path angles, a non-apoapsis deorbit position yields a

significant savings in ∆V from an apoapsis deorbit. A plot relating the EI conditions of

flight path angle and velocity at constant perigee altitude of 150 km for different values

of eccentricity is shown in Figure 2.9.

Figure 2.5 True anomaly of deorbit position for specified values of periapsis
altitude and entry flight path angle

A similar numerical survey of the work in Ref. [9] is attempted. The results presented

in Ref. [9], which showed a significant savings in ∆V required for deorbit for the case

involving a functional relationship between VE2 and γE2, are relevant for semi-major

axis values between 6500 km and 6454 km for an eccentricity of .01. This orbit has a

periapsis altitude less than the nominal EI altitude of approximately 122 km. The 6-th

order polynomials for varying values of ν1 decrease rapidly across the ν1 axis, practically

a vertical line. This verifies that the problem is ill-posed.

As is shown above, an appreciable savings in fuel can be achieved by locating the
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Figure 2.6 True anomaly of deorbit position for periapsis altitude of 150
km with different entry flight path angle values

Figure 2.7 Impulse difference between deorbit at apogee and deorbit at op-
timal off apogee deorbit position for specified values of periapsis
altitude and entry flight path angle
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Figure 2.8 Deorbit velocity at optimum deorbit position for FPA = -6.5
degrees at different eccentricities

Figure 2.9 Deorbit velocity at optimum deorbit position for FPA = -6.5
degrees at different eccentricities
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position of the impulse appropriately, showing that the timing of the burn is an imper-

ative part of the solution. The above methods are not necessarily appropriate for this

finite time burn problem but provide insight into the necessity of finding a method for

determining the timing of the burn given any orbit.
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CHAPTER 3. Finite-Thrust Deorbit Guidance Problem and

Algorithm

The majority of previous work has assumed impulsive maneuvers. As is evident by

NASA’s Space Shuttle, this is not a realistic solution for the deorbit problem. The

deorbit burn for such low thrust vehicles will last for minutes. The following sections

describe the finite burn time optimal control problem to determine the thrust vector

direction and magnitude, as well as the algorithm formulation. Section 1 gives the

overview of the coordinate system used from the problem formulation. Section 2 gives the

optimal control problem formulation for the finite time burn deorbit guidance problem.

The different sets of targeting conditions for the problem are given in Section 3. The

algorithm formulation is discussed in Section 4. In Section 5, the model of the Space

Shuttle as well as its targeting functions are given.

3.1 Coordinate Frame

The deorbit guidance problem is solved using the Earth Centered Inertial (ECI)

Coordinate System. The ECI coordinate frame has its origin at the center of the Earth

and is designated with IJK. The I axis lies in the equatorial plane and is in the direction

of the vernal equinox, the J axis is 90 degrees east of the I axis in the equatorial plane,

and the K axis completes the right-handed system and extends north through the North

Pole [19]. The ECI frame is shown in Figure 3.1.



www.manaraa.com

28

Figure 3.1 ECI coordinate system

3.2 Finite Thrust Problem Formulation

The following description of the burn-coast problem formulation is from Ref. [23]. A

complete summary of the optimal control problem formulation is presented in Appendix

A. The three-dimensional point-mass equations of motion in vacuum are

ṙ = V (3.1)

V̇ = g(r) +
T1T
m(t)

(3.2)

ṁ = − T

g0Isp
(3.3)

where r ∈ R3 is the position vector, V ∈ R3 is the inertial velocity vector in an inertial

frame, and g is the gravitational acceleration as a function of r. The magnitude of g at

a reference radius, R0, is g0. The engine thrust magnitude is T in the direction of 1T .

The specific impulse of the engine is Isp and is used to determine the mass rate ṁ. The
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gravitational acceleration is approximated by

g = − µ
r̄2

r

r̄
= −ω̄2r (3.4)

where µ is Earth’s gravitational parameter, r̄ is a reference radius and ω is the Schuler

frequency at the reference radius, ω̄ =
√
µ/r̄3. The equations of motion are normalized

using R0 for distance,
√
R0g0 for velocity, and

√
R0/g0 for time. The nondimensional

equations of motion are

r′ = V (3.5)

V′ = −ω2r + AT1T (3.6)

m′ = −T
c

(3.7)

where the differentiation is with respect to nondimensional time, ω =
√
R0/r̄3 is nondi-

mensional Schuler frequency, AT = T/(mg0) is instantaneous thrust acceleration, and

c = Isp/
√
R0/g3

0 is a constant for each powered stage.

The EI conditions are represented as k final state conditions

φ(rf ,Vf ) = 0. (3.8)

The performance index that is minimized by the optimal thrust direction vector 1T is

J = −
∫ τf

τ0
m′dτ =

∫ τf

τ0

T

c
dτ, (3.9)

a minimization of propellant-consumption for a given initial mass. The Hamiltonian is

H = pTr V − ω2pTV r + pTV 1TAT − pm
T

c
− T

c

= pTr V − ω2pTV r + T (
pTV 1T
mg0

− pm
c
− 1

c
) := H0 + TS. (3.10)

The costate vector is comprised of pr and pV and satisfies the differential equations p′r

p′V

 = −

 ∂H/∂r

∂H/∂V

 =

 ω2pV

−pr

 . (3.11)
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The optimal thrust vector is in the direction 1T = pV / ‖ pV ‖ and pV is called the

primer vector. See Appendix B for complete description of the primer vector. When to

coast, T = 0, and when to burn full thrust is determined by the switching function S.

T =


Tmax if S > 0

0 if S < 0
(3.12)

From the optimal control theory for the free final-time deorbit problem, H ≡ 0 since H

is not an explicit function of time. If the optimal deorbit burn ends at τ2, then S(τ2) = 0

necessarily. This is equivalent to

H0(τ2) = 0. (3.13)

3.2.1 Analytical Solution from Burn Arcs

The analytical solution to the costate equation and nondimensional equations of

motion is shown. Let the starting time be represented by τ0 and pV0 and pr0 are the

to-be-determined initial conditions of the costate vector. Let

λ(τ) =

 pV (τ)

−pr(τ)/ω

 , λ0 =

 pV0

−pr0/ω

 (3.14)

and for τ ≥ τ0, the costate equation has the closed-form solution

λ(τ) =

 cos[ω(τ − τ0)]I3 sin[ω(τ − τ0)]I3

− sin[ω(τ − τ0)]I3 cos[ω(τ − τ0)]I3

λ0 := Φ(τ − τ0)λ0 (3.15)

where I3 is the 3× 3 identity matrix. Let

Ic(τ, τ0) =
∫ τ

τ0
1pV (ζ) cos(ωζ)AT (ζ)dζ =

∫ τ

τ0
ic(ζ)dζ ∈ R3 (3.16)

Is(τ, τ0) =
∫ τ

τ0
1pV (ζ) sin(ωζ)AT (ζ)dζ =

∫ τ

τ0
is(ζ)dζ ∈ R3 (3.17)

where 1pV is the unit vector of pV . Define

x(τ) =

 r(τ)

−V(τ)
ω

 , x0 =

 r0

−V0

ω

 , I(τ, τ0) =

 Ic(τ, τ0)

Is(τ, τ0)

 . (3.18)
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The state equations have the solution

x(τ) = Φ(τ − τ0)x0 + Γ(τ)I(τ, τ0) (3.19)

where

Γ(τ) =
1

ω

 sin(ωτ)I3 − cos(ωτ)I3

cos(ωτ)I3 sin(ωτ)I3

λ0. (3.20)

The thrust integrals Ic and Is are evaluated using a quadrature formula, which is shown

to be accurate enough for powered flight arcs up to several hundred seconds. Milne’s

rule is used with the following formulation:

Ij(τ, τ0) ≈ τ − τ0

90
[7ij(τ0) + 32ij(τ0 + δ) (3.21)

+ 12ij(τ0 + 2δ) + 32ij(τ0 + 3δ) + 7ij(τ0 + 4δ)]

for j = c, s.

3.2.2 Solution for Coast Arcs

An inverse-square gravity model is used for the solution of Keplerian motion during

the first coast arcs. The accuracy of the solution is not affected by the linear gravity

approximation. Goodyear’s method, presented in Ref. [24], is used to solve the Ke-

pler initial value problem and yields the result of the future state and it’s gradients as

functions of current state. The solution of the costate is propagated using Eq. (3.15).

When the J2 gravitational term is added as part of the gravity model, the final coast

from the end of the final burn to entry interface is modeled using an inverse-square

gravity model with the addition of the J2 gravitational effects [25]. This is modeled as

ẍ = −µ x
r3

[1− J2
3

2
(
r0

r
)2(5

Z2

r2
− 1)] (3.22)

ÿ = −µ y
r3

[1− J2
3

2
(
r0

r
)2(5

Z2

r2
− 1)] (3.23)

z̈ = −µ z
r3

[1− J2
3

2
(
r0

r
)2(5

Z2

r2
− 3)] (3.24)
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The solution is determined via numerical integration and the gradients are found us-

ing a finite difference method. Without the J2 gravitational term, Goodyear’s method

finds the solution using the analytical solution. The addition of the J2 gravitational

term means the solution must be solved for using numerical integration. The numerical

integration scheme used is a 4-th order Runge-Kutta method. This is a key difference

between whether or not the J2 gravitational term is included. Numerical integration is

computationally intensive and therefore adds a great deal of time to the solution process.

3.3 EI Targeting Conditions

The targeting conditions are a very important part of the deorbit guidance problem

because they ensure a safe reentry flight. The following sections describe different sets

of EI targeting conditions and their formulation.

Let Vf and rf be the position and velocity vector at EI following the deorbit trajec-

tory. Define 1HAC to be the unit vector from the origin of the coordinate system to the

location of the landing site. 1HAC is a function of time, moving in the ECI coordinate

frame as the Earth rotates. See Fig. 3.2 for the geometry.

Figure 3.2 EI range-to-go landing site
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To begin with, define a vector

Rh = rf × 1HAC . (3.25)

Rh is perpendicular to rf and 1HAC and in the same plane as rf and 1HAC .

3.3.1 EI Targeting Conditions with Specified Functions for EI velocity and

flight path angle (Set 1)

The terminal conditions to be met at the EI are defined as follows:

s1 =
1

2
rTf rf −

1

2
r2
EI = 0 (3.26)

s2 = VT
f Rh = 0 (3.27)

s3 = VT
f rf − VfrEI sin γ∗(Θf ) = 0 (3.28)

s4 =
1

2
VT
f Vf −

1

2
V ∗2(Θf ) = 0. (3.29)

The first constraint simply sets the EI altitude to be equal to the given value rEI , which

gives an altitude of 120 km. The second constraint requires the velocity vector at EI to

be in the same plane of rf and 1HAC . This ensures that the velocity vector of the vehicle

at EI is pointed towards the landing site. For most deorbit scenarios, this constraint is

met without any problems. For some scenarios such as when the vehicle’s orbit has an

inclination smaller than the landing site latitude, an out-of-plane maneuver would be

necessary. Out-of-plane maneuvers are very costly in terms of fuel consumption but are

necessary for some scenarios. For those cases, Eq. (3.27) ensures that the crossrange

distance to the landing site is kept small and within the range of the lifting capability

of the vehicle. Constraints Eqs. (3.28) and (3.29) require that the EI flight path angle

and velocity be equal to certain values determined by the range angle Θf at EI, defined

by (see Fig. 3.2 for the geometry)

cos Θf = 1Trf 1HAC (3.30)
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where 1rf = rf/rf . The functions γ∗(Θf ) and V ∗(Θf ) are two given functions (but

otherwise can have any functional form) of Θf . For a specific vehicle, these two functions

will define how the EI conditions on γ and V are expected to vary as the range from

EI to the landing site changes as a result of different deorbit maneuvers. The known

practice for the Space Shuttle can be easily included in this formulation as a special

case. For instance, V and γ are specified as

V ∗(Θf ) = a1Θf + a2 (3.31)

γ∗(Θf ) = b1Θf + b2 (3.32)

where a1, a2, b1 and b2 are constants. Then Eqs. (3.28) and (3.29) imply that

Vf = V ∗ = a1Θf + a2 (3.33)

γf = γ∗ = b1Θf + b2. (3.34)

Eliminating Θf between the two equations gives

a1γf − b1Vf − b2 + a2b2 := c1γf + c2Vf + c3 = 0 (3.35)

This is a linear relationship between γf and Vf , just as is done for the Shuttle [4]. Our

current formulation in Eqs. (3.28) and (3.29), however, allows much more flexibility to

accommodate different evaluations of desired EI conditions and offers a mechanism to

relate the EI velocity to range condition, which will be crucial for the minimum-fuel

problem of deorbiting to be well posed.

Let us first consider the targeting conditions Eqs. (3.26)–(3.29). The transversality

conditions on the co-state vectors corresponding to the terminal constraints Eqs. (3.26)–

(3.29) are

prf = ν1
∂s1

∂rf
+ ν2

∂s2

∂rf
+ ν3

∂s3

∂rf
+ ν4

∂s4

∂rf
= ν1rf + ν2RV

+ ν3

(
Vf − VfrEIγ∗′ cos γ∗

∂Θf

∂rf

)
− ν4V

∗V ∗′
∂Θf

∂rf
(3.36)
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pVf = ν1
∂s1

∂Vf

+ ν2
∂s2

∂Vf

+ ν3
∂s3

∂Vf

+ ν4
∂s4

∂Vf

(3.37)

= ν2Rh + ν3

(
rf − 1Vf rEI sin γ∗

)
+ ν4Vf

where 1Vf = Vf/Vf , and

RV = 1HAC ×Vf (3.38)

γ∗′ =
∂γ∗(Θf )

∂Θf

(3.39)

V ∗′ =
∂V ∗(Θf )

∂Θf

. (3.40)

Recall that cos Θf = 1HAC ·rf/rf , and taking the gradient of Θf with respect to rf gives

∂Θf

∂rf
= − 1

sin Θf

· 1

rf
(1HAC − cos Θf1rf ). (3.41)

This equation indicates that ∂Θf/∂rf is a vector in the plane of 1HAC and 1rf .

The above transversality conditions contain additional unknown multipliers ν1–ν4.

Not only do they increase the number of unknowns needed to be solved, but their

magnitudes may differ significantly from those of the state and costate variables. The

latter makes the numerical solution much more difficult. In the following, the multipliers

are eliminated from the equations and two more independent terminal conditions are

derived that do not involve the multipliers. Consider first the dot product

RT
hprf = ν1R

T
h rf + ν2R

T
hRV + ν3

(
RT
hVf − VfrEIγ∗′ cos γ∗RT

h

∂Θf

∂rf

)
(3.42)

− ν4V
∗V ∗′RT

h

∂Θf

∂rf
.

From Eq. (3.27) we have RT
hVf = 0 and by the definition of Rh we know RT

h rf = 0, and

RT
h∂Θf/∂rf = 0 because of Eq. (3.41) (and Rh ⊥ 1HAC as well). These observations

lead to

RT
hprf = ν2R

T
hRV . (3.43)

Considering the following dot product and using similar reasoning results in

RT
hpVf = ν2R

T
hRh + ν3(RT

h rf −RT
h1Vf rEI sin γ∗) + ν4R

T
hVf = ν2R

T
hRh. (3.44)
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Eliminating ν2 between Eqs. (3.43) and (3.44) yields the 5-th terminal constraint free

of the multipliers:

s5 = (RT
hRh)R

T
hprf − (RT

hpVf )(RT
hRV ) = 0. (3.45)

Next, define

Rhr = Rh × rf (3.46)

RhV = Rh ×Vf . (3.47)

The first vector above is in the plane of 1HAC and 1rf and perpendicular to rf . By

constraint Eq. (3.27), Vf is in the plane of 1HAC and rf and by the definition of RV

in Eq. (3.38) we have RT
hrRV = 0. The second vector RhV is also in the plane of 1HAC

and rf when constraint Eq. (3.27) is met and it is perpendicular to Vf . Taking the dot

product Rhr with prf in Eq. (3.37) produces

RT
hrprf = ν3

(
RT
hrVf − VfrEIγ∗′ cos γ∗RT

hr

∂Θf

∂rf

)
− ν4V

∗V ∗′RT
hr

∂Θf

∂rf
(3.48)

where, because RT
hrrf = 0,

RT
hr

∂Θf

∂rf
= − 1

sin Θf

1

rf
(RT

hr1HAC) = − 1

sin Θf

1

rEI
RT
hr1HAC . (3.49)

Therefore,

RT
hrprf = ν3

(
RT
hrVf +

Vfγ
∗′ cos γ∗

sin Θf

RT
hr1HAC

)
+ ν4

V ∗V ∗′

rEI sin Θf

RT
hr1HAC . (3.50)

Similarly, the dot product of pVf by RhV yields

RT
hV pVf = ν3(RT

hV rf ). (3.51)

Finally, taking the dot product of pVf with Vf and using constraints Eq. (3.27) and Eq.

(3.28) arrives at

VT
f pVf = ν4V

2
f . (3.52)
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Using Eqs. (3.51) and (3.52) to solve for ν3 and ν4, respectively, and substituting them

back to Eq. (3.50), the end result is the 6-th terminal constraint independent of the

multipliers

s6 = RT
hrprf −

RT
hV pVf

RT
hV rf

(
RT
hrVf +

Vfγ
∗′ cos γ∗

sin Θf

RT
hr1HAC

)
(3.53)

−
V ∗′(VT

f pVf )(RT
hr1HAC)

VfrEI sin Θf

= 0.

The 7-th terminal constraint for this free final-time problem is based on the transversality

condition of H(τf ) = 0. The last arc in the deorbit maneuver is a coast arc where T = 0,

H = H0 during this coast arc, and H0 is the part of the Hamiltonian independent of the

thrust, as defined in Eq. (3.10). Therefore, the 7th terminal constraint is

s7 = H0(τf ) = pTrf Vf + pTVf g(rf ) = 0. (3.54)

3.3.2 EI Targeting Conditions with Specified Range-To-Go (Set 2)

It may be beneficial to explicitly define the range-to-go from the EI to the landing site

[2]. Let Θ∗ be such a specified range angle. Another set of possible targeting conditions

are as follows

s1 =
1

2
rTf rf −

1

2
r2
EI = 0 (3.55)

s2 = VT
f Rh = 0 (3.56)

s3 = 1THACrf − rEI cos Θ∗ = 0 (3.57)

s4 = f(Vf , γf ) = 0 (3.58)

where f(Vf , γf ) is a function of Vf and γf , the EI velocity and flight path angle. Eq.

(3.58) is vehicle dependent. For the Shuttle, f = Vf + k1γf + k2 with two constants

k1 and k2. Conceivably, the relationship between Vf and γf can be nonlinear and this

formulation allows for any such function. Constraint Eq. (3.57) specifies that the EI
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range to landing site must be equal to Θ∗. In this case the transversality conditions are

prf = ν1rf + ν2RV + ν31HAC + ν4fγ
∂γf
∂rf

(3.59)

pVf = ν2Rh + ν4

(
fV 1Vf + fγ

∂γf
∂Vf

)
(3.60)

where fγ = ∂f/∂γf and fV = ∂f/∂Vf . From the relationship rTf Vf = rfVf sin γf , we

can show that

∂γf
∂rf

=
1

rfVf cos γf

[
Vf − (1TrfVf )1rf

]
(3.61)

∂γf
∂Vf

=
1

rfVf cos γf

[
rf − (1TVf rf )1Vf

]
(3.62)

i.e., both ∂γf/∂rf and ∂γf/∂rf are in the plane of rf and Vf . Using the same reasoning

it can be argued that s5 in Eq. (3.45) remains valid in this case, but not s6 in Eq. (3.54).

Instead, taking the dot product of pVf in Eq. (3.60) with rf and Vf , respectively, gives

rTf pVf = ν4

{
fV (1TVf rf ) +

fγ
rfVf cos γf

[
r2
f − (1TVf rf )

2
]}

= ν4

{
fV (1TVf rf ) +

fγ
rEIVf cos γf

[
r2
EI − (1TVf rf )

2
]}

(3.63)

VT
f pVf = ν4fV Vf . (3.64)

Eliminating ν4 between them gives a different s6

s6 = fV rEIV
2
f cos γf

(
rTf pVf

)
(3.65)

−
(
VT
f pVf

){
rEIVf cos γffV

(
1TVf rf

)
+ fγ

[
r2
EI −

(
1TVf rf

)2
]}

= 0.

The expression for s7 in Eq. (3.54) remains valid since the problem is still a free final-time

problem.

3.3.3 EI Targeting Conditions without Crossrange Distance Constraint

The crossrange distance constraint, Eqs. (3.27) and (3.56), is very hard to satisfy. By

timing the deorbit flight to limit the crossrange distance, this constraint can be deleted.
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By waiting for the 1HAC of the rotating Earth to be within a certain tolerance of the

orbit plane at the end of deorbit flight, the crossrange distance is minimized.

3.3.3.1 EI Targeting Conditions with Specified Functions for EI velocity

and flight path angle (Set 3)

Let the first three constraints be the same constraints from the first set of targeting

conditions with the exception of Eq. (3.27):

s1 =
1

2
rTf rf −

1

2
r2
EI = 0 (3.66)

s2 = VT
f rf − VfrEI sin γ∗(Θf ) = 0 (3.67)

s3 =
1

2
VT
f Vf −

1

2
V ∗2(Θf ) = 0 (3.68)

The transversality equations are

prf = ν1rf + ν2

(
Vf − VfrEIγ∗′ cos γ∗

∂Θf

∂rf

)
− ν3V

∗V ∗′
∂Θf

∂rf
(3.69)

pVf = ν2

(
rf − 1Vf rEI sin γ∗

)
+ ν3Vf . (3.70)

Define

Rhr = Rh × rf (3.71)

which is a vector in the plane of rf and 1HAC and perpendicular to rf and

RΘHAC
= RΘf

× 1HAC ×RΘf
(3.72)

where

RΘf
= 1HAC − cos Θf1rf . (3.73)

RΘHAC
is in the plane of rf and 1HAC and perpendicular to RΘf

. Taking the dot product

of Rh with Eq. (3.70) yields

RT
hprf = RT

hVfν2 (3.74)
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since RT
h rf = 0 and RT

hRΘf
= 0. The dot product of Vf with Eq. (3.70) gives

VT
f pVf = V 2

f ν3 (3.75)

since
(
rf − 1Vf rEI sin γ∗

)
= 0 by Eq. (3.67). Eq. (3.74) is solved for ν2 and Eq. (3.75)

is solved for ν3. Taking the dot product of Rh with Eq. (3.70) and Rhr with Eq. (3.70)

and substituting in for ν2 and ν3 gives a 4-th and 5-th terminal condition

s4 = VfR
T
hpVf − rEI sin γ∗(Θf )(R

T
hprf )− (RT

h1Vf )(VT
f pVf ) = 0 (3.76)

s5 = (RT
hrprf )(RT

hVf ) sin Θf − (RT
hprf )(RT

hrVf sin Θf + RT
hf

1HACVf cos γ∗(Θf )γ
∗′)

−(RT
hVf )(R

T
hr1HAC)

V ∗′V ∗

rf

VT
f pVf
V 2
f

= 0. (3.77)

Define

RΘV
= RΘf

×Vf

which is perpendicular to RΘf
and Vf . Taking the dot product of RΘV

with Eq. (3.70)

gives

RT
ΘV

prf = RT
ΘV

rfν1 (3.78)

since RT
ΘV

RΘf
= 0 and RT

ΘV
Vf = 0. The dot product of RΘHAC

and Eq. (3.70) is

RT
ΘHAC

prf = RT
ΘHAC

rfν1 + RT
ΘHAC

Vfν2. (3.79)

Solving Eq. (3.78) for ν1 and ν2 found above and substituting them into Eq. (3.79) gives

the 6-th terminal condition

s6 = (RT
ΘHACprf )(RT

ΘV rf )(R
T
hVf )− (RT

ΘHACrf )(R
T
ΘV prf )(RT

hVf )

−(RT
ΘHACVf )(R

T
ΘV rf )(R

T
hprf ) = 0 (3.80)

The seventh terminal constraint is the same as 3.54.
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3.3.3.2 EI Targeting Constraints with Range-To-Go Specified (Set 4)

Let the first three constraints be the same constraints from the first set of targeting

conditions with the exception of Eq. (3.56):

s1 =
1

2
rTf rf −

1

2
r2
EI = 0 (3.81)

s2 = 1THACrf − rEI cos Θ∗ = 0 (3.82)

s3 = f(Vf , γf ) = 0 (3.83)

The transversality equations are

prf = ν1rf + ν21HAC + ν3fγ
∂γf
∂rf

(3.84)

pVf = ν3

(
fV 1Vf + fγ

∂γf
∂Vf

)
(3.85)

To determine three of the remaining terminal constraints, the following dot product is

taken

RT
hprf = fγR

T
h

∂γf
∂rf

ν3. (3.86)

ν3 is solved for using Eq. (3.86). Taking the dot products of Eq. (3.85) with Rf , Vf

and Rh and substituting in for ν3 gives the following three terminal conditions:

s4 = (rTf pVf )(fγR
T
hγrf )− (fγr

T
f γVf + fV rTf 1Vf )(RT

hprf ) (3.87)

s5 = (VT
f pVf )(fγR

T
hγrf )− (fγV

T
f γVf + fV VT

f 1Vf )(RT
hprf ) (3.88)

s6 = (RT
hpVf )(fγR

T
hγrf )− (fγR

T
hγVf + fV RT

h1Vf )(RT
hprf ) (3.89)

The 7-th terminal constraint is the same as Eq. (3.54).

3.3.3.3 EI Targeting Constraints with Velocity and Flight Path Angle

Specified (Set 5)

Let the first three constraints be

s1 =
1

2
rTf rf −

1

2
r2
EI = 0 (3.90)
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s2 =
1

2
VT
f Vf −

1

2
V 2
EI = 0 (3.91)

s3 = VT
f rf − VEIrEI sin γEI = 0 (3.92)

where VEI and γEI . The transversality equations are

prf = ν1rf + ν3Vf (3.93)

pVf = ν2Vf + ν3rf . (3.94)

Following the same method to eliminate the multipliers, the next three terminal con-

straints are

s4 = (RT
hVf )(r

T
f prf )(VT

f rf )− (VT
f prf )(RT

hVf )(r
T
f rf ) + V 2

f (RT
hprf )(rTf rf )(3.95)

− (RT
hprf )(rTf Vf )

2 = 0

s5 = (rTf pVf )(RT
hVf )− (RT

hpVf )(rTf Vf )− (RT
hprf )(rTf rf ) = 0 (3.96)

s6 = (VT
f pVf )(RT

hVf )− (RT
hpVf )(VT

f Vf )− (RT
hprf )(VT

f rf ) = 0 (3.97)

The seventh terminal constraint is the same as Eq. (3.54).

3.4 Algorithm Formulation

The algorithm is a closed loop guidance scheme. The numerical solution is obtained

by an analytical multiple shooting method described in Ref. [26]. For in depth descrip-

tion of the analytical multiple shooting method see Appendix C. Every second of flight,

the guidance problem is solved for the thrust vector, which is used as an input for the

vehicle. An initial outer loop is added to the closed loop guidance simulation. This outer

loop determines which 1HAC should be targeted as well as a required manual coast time

to reach the desired crossrange distance tolerance.

The timing of the burn is essential in the minimum fuel deorbit guidance problem.

Out of plane maneuvers are very expensive with regard to fuel and are avoided when
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possible. For orbits with inclination values greater than the latitude of the Landing Site

on Earth, the Landing Site is in the orbit plane twice in a 24 hour period. The burn (or

burns) of the deorbit flight is timed so that when the vehicle reaches EI, the Landing

Site is within a specified crossrange distance tolerance of the orbit place.

To ensure a feasible crossrange distance for vehicle during entry flight, 1HAC should

be within a certain tolerance of the orbital plane when the vehicle reaches EI. Let t = 0

be the time the guidance system starts looking for a solution and 1HAC0 is the value of

1HAC at t = 0. See Fig. 3.3 for graphical description.

Figure 3.3 1HAC

Define the vector from the origin of the coordinate system to the two intersection

points of the landing site and orbit plane as 1HAC1 and 1HAC2. One of these two 1HAC

values is chosen to be targeted for the terminal conditions of the problem. The time for

the Landing Site to travel from 1HAC0 to 1HAC1 and 1HAC2 is defined as t1 and t2. The

time of flight from the vehicles initial position on orbit to 1HAC1 and 1HAC2 is estimated

using Kepler’s time-of-flight solution. These times are labeled as tv1 and tv2 respectively.
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The 1HAC to be targeted is chosen in the following fashion:

if t1 < t2 then

if tv1 < t1 then

1HAC = 1HAC1

else

1HAC = 1HAC2

end if

else

if tv2 < t2 then

1HAC = 1HAC2

else

1HAC = 1HAC1

end if

end if

After the 1HAC to be targeted is chosen, a manual coast of the vehicle is determined.

The Earth rotates at a rate of 7.2921159 × 10−5 radians per second. For the Landing

Site to be within range of the targeted 1HAC , a initial manual coast of several orbital

periods of the vehicle may be necessary. This manual coast is defined as tC and is

found by dividing t1 or t2 (depending on which 1HAC is chosen) by the period of the

orbit. This factor is then rounded down to the nearest whole number and decreased by

one. Choosing the initial manual coast this way gives ample opportunity for the vehicle

to coast and find the point to burn so the vehicle is within the required range of the

targeted 1HAC at EI. Once the initial manual coast is determined the problem is then

solved using one of the following coast-burn formulations:

1. Burn-Coast (BC)
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2. Coast-Burn-Coast (CBC)

3. Burn-Coast-Burn (BCB)

4. Burn-Coast-Burn-Coast (BCBC)

The coast-burn formulation used to solve the problem is based on the characteristics of

the vehicle’s initial orbit and the vehicle’s engine capabilities. For Shuttle-type vehicles

with very low thrust-to-weight ratios, multiple burns are needed for higher altitude and

higher eccentricity orbits. There is no known analytical method by which to decide the

number of burns given the orbit details. The number of burns needed to reach entry

optimally is determined via numerical simulation.

After the burn-coast formulation and the initial manual coast is determined for the

specified 1HAC , the vehicle continues to coast manually until a solution can be found

that meets the specified burn time bounds. If no solution is found while the vehicle is

coasting and the manual coast becomes greater than the time it takes for 1HAC to reach

its targeted position, the vehicle then targets the other desired 1HAC position. If no

solution is found, the burn time bound is increased and the process repeats itself till a

solution is found that targets one of the desired 1HAC values and the burn time is within

the desired burn time bounds. The burn time bounds are a very loose constraint but

necessary to keep the burn time within a desired set.

The initial guess used for the vacuum guidance solution is constructed as follows.

Given the position and velocity of the vehicle after the manual coast has occurred, if the

first arc is a coast arc, propagate position and velocity in time to the first burn arc. At

the beginning of the first burn arc, set the costate vector to be

pV = − V

|V|
(3.98)

pr =
−r
|r|

+ pV . (3.99)
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This sets the initial guess of the pV vector to be in the opposite direction of the velocity

vector, representing a braking maneuver. By the problem setup, pr = −ω2pV , pr is

approximated using the velocity equation of motion where the thrust vector is taken

to be in the direction of the primer vector. This costate is then propagated along the

different arcs using the solution given above. For the CBC solution, the costate at the

beginning of the burn is propagated backwards to find the initial guess of the costate

at the beginning of the initial coast. In [27] an automated initial guess system for burn

times, coast times, state, and costate is given. This system is a different initial guess

method than the one explained above and will be investigated in the future.

Once an initial solution is found that meets the crossrange distance tolerance and

targets an appropriate 1HAC at EI, the closed loop guidance simulation is called. The

initial guess of the simulation is the solution found in the outerloop. Since the closed

loop simulation is updated each second, the final crossrange distance tolerance at EI

may be larger than the crossrange distance that the initial solution determined.

3.5 NASA’s Space Shuttle Model and Targeting Functions

NASA’s Space Shuttle is the model used in the following numerical work. The Shuttle

relies on its Orbital Maneuvering System (OMS) to perform on-orbit maneuvers. The

OMS system is capable of producing 53378.6 Newtons of thrust at a mass-rate of 17.02

kg/sec. The engine Isp is 313 seconds. The on-orbit initial mass is 95254.38 kg. The

functional relationships for the Shuttle used in the terminal conditions are constructed

and shown in the following section. The landing site is Kennedy Space Center with a

latitude of 28.615 deg and a longitude of −80.694 deg for all test cases.

To construct representative EI targeting functions γ∗(Θ) and V ∗(Θ) used in Eqs.

(3.28), (3.29), (3.67), and (3.68), we examine the historical mission data for the Space

Shuttle. Figure 3.4 plots the EI flight path angle versus the range-to-go to the landing
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site from a number of past Shuttle missions. It is seen that the data is reasonably fitted

by a straight line

γ∗ = 2.65Θ− 4.5152. (γ∗ in deg, Θ in rad) (3.100)

Data corresponding to various values of EI inertial velocity and flight path angle near

the middle of the entry corridor can be read off of Figure 3 in Ref. [3]. Approximating

these data pairs with a linear equation and then replacing flight path angle with the

above equation, we obtain the second linear relationship between the inertial velocity

and range at EI

V ∗ = 226.8Θ + 25551, (V ∗ in ft/s, Θ in rad) (3.101)

Note that the above two functions only represent local relationships around typical

operating conditions. To use these two functions in the guidance algorithm, care must

be exercised. During the search, the value of Θ could vary in a wide range, rendering

the values of γ∗ and V ∗ unrealistic. To avoid this problem, these targeting functions are

modified to be

γ∗ =


−1.6 (deg), if Θ < 1.1 (rad)

2.65Θ− 4.5152 (deg), if 1.1 ≤ Θ ≤ 1.4 (rad)

−0.805 (deg), if Θ > 1.4 (rad)

(3.102)

V ∗ =


25800.48 (ft/s), if Θ < 1.1 (rad)

226.8Θ + 25551 (ft/s), if 1.1 ≤ Θ ≤ 1.4 (rad)

25868.52 (ft/s), if Θ > 1.4 (rad)

(3.103)

The functional relationship between the EI velocity and flight path angle in Eqs.

(3.58) and (3.88) is obtained by eliminating Θ from Eqs. (3.102) and (3.103)

f(Vf , γf ) = Vf − 85.5849γf − 2555.27 = 0, (Vf in ft/s, γf in deg) (3.104)
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Figure 3.4 Flight path angles and ranges at EI from Space Shuttle missions
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CHAPTER 4. Deorbit Guidance for Initial Circular Orbits

Near circular orbits are the most common orbit for the Space Shuttle. Speed is

constant on a circular orbit so deorbit timing is based on the timing of the 1HAC . In

this chapter, the deorbit maneuver from circular orbits of several altitudes is studied.

Starting with low altitude of 200 km and ascending to high altitude orbits of 1100 km,

the optimal deorbit guidance problem is solved. The impulse maneuver results are given

in Section 1. Section 2 presents low altitude finite time burn results. The effects of

the crossrange constraint on the problem is explored in Section 3. Section 4 shows the

benefits of the multiple burn maneuver for higher altitude orbits and a summary of

findings is presented in Section 5. The cases tested are listed in Table 4.1, where i is the

inclination of the initial orbit, Ω is the longitude of the ascending node, X, Y , and Z are

the components of the position in the ECI frame, and Ẋ, Ẏ , and Ż are the components

of the velocity in the ECI frame. All results assume Keplerian motion for the coast arcs.

4.1 Impulsive Deorbit Maneuver

Solving the impulsive deorbit maneuver for an initial circular orbit with EI conditions

of flight path angle, velocity, and altitude involves solving for the impulse but not the

location. The required impulse will be the same for each location of the initial orbit. If

there are other terminal conditions besides flight path angle, velocity, and altitude, the

location of the impulse will need to be determined. The approach from Ref. [6] described

in Section 2.1 is used to solve the impulse problem for cases 1 - 20. The specified EI
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Table 4.1 Test Cases for Circular Orbits

Case Altitude (km) i (deg) Ω (deg) X (km) Y (km) Z (km) Ẋ (km/s) Ẏ (km/s) Ż(km/s)

1 200 50 240 1526.692 -4679.246 4363.936 5.537 4.587 2.981
2 210 50 240 1529.013 -4686.359 4370.571 5.533 4.583 2.979
3 220 50 240 1531.334 -4693.473 4377.205 5.528 4.58 2.977
4 230 50 240 1533.655 -4700.586 4383.839 5.524 4.576 2.974
5 240 50 240 1535.976 -4707.7 4390.473 5.52 4.573 2.972
6 250 50 240 1538.297 -4714.813 4397.107 5.516 4.569 2.97
7 260 50 240 1540.618 -4721.927 4403.741 5.512 4.566 2.968
8 270 50 240 1542.939 -4729.04 4410.375 5.508 4.563 2.965
9 280 50 240 1545.259 -4736.154 4417.01 5.504 4.559 2.963
10 290 50 240 1547.58 -4743.267 4423.644 5.499 4.556 2.961
11 300 50 240 1549.901 -4750.381 4430.278 5.495 4.552 2.959
12 310 50 240 1552.222 -4757.494 4436.912 5.491 4.549 2.956
13 320 50 240 1554.543 -4764.608 4443.546 5.487 4.546 2.954
14 330 50 240 1556.864 -4771.721 4450.18 5.483 4.542 2.952
15 340 50 240 1559.185 -4778.835 4456.814 5.479 4.539 2.95
16 350 50 240 1561.506 -4785.948 4463.449 5.475 4.535 2.948
17 360 50 240 1563.827 -4793.062 4470.083 5.471 4.532 2.945
18 370 50 240 1566.148 -4800.175 4476.717 5.467 4.529 2.943
19 380 50 240 1568.468 -4807.289 4483.351 5.463 4.525 2.941
20 390 50 240 1570.789 -4814.402 4489.985 5.459 4.522 2.939
21 400 50 240 1573.11 -4821.516 4496.619 5.455 4.519 2.937
22 500 50 240 1596.319 -4892.65 4562.961 5.415 4.486 2.915
23 600 50 240 1619.528 -4963.785 4629.302 5.376 4.453 2.894
24 700 50 240 1642.738 -5034.92 4695.643 5.338 4.422 2.874
25 800 50 240 1665.947 -5106.055 4761.985 5.3 4.391 2.854
26 900 50 240 1689.156 -5177.19 4828.326 5.264 4.361 2.834
27 1000 50 240 1712.365 -5248.324 4894.668 5.228 4.331 2.815
28 1100 50 240 1735.574 -5319.459 4961.009 5.193 4.302 2.796
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Table 4.2 Results from general maneuver procedure shown in [6] with flight
path angle equal to −1 degrees and velocity equal to 7879.5 m/s.

Initial Altitude (km) ∆V (km/s) δ (deg) ∆TE (sec)

200 0.1655 -89.41 510
210 0.1650 -87.36 3261
220 0.1639 -85.28 3322
230 0.1621 -83.15 3383
240 0.1597 -80.93 3445
250 0.1566 -78.58 3508
260 0.1527 -76.07 3573
270 0.1481 -73.31 3641
280 0.1427 -70.22 3712
290 0.1363 -66.65 3787
300 0.1288 -62.39 3868
310 0.1201 -57.02 3958
320 0.1099 -49.70 4062
330 0.0976 -38.19 4195
340 0.0824 -2.357 4493
350 0.0881 0 4511
360 0.0940 0 4511
370 0.0998 0 4511
380 0.1057 0 4511
390 0.1115 0 4511

conditions of flight path angle, velocity, and altitude are −1 degrees, 7879.5 m/s, and

120 km. The results are shown in Table 4.2.

As shown in Table 4.2, after an initial orbit altitude of 340 km, the thrust parameter

δ is zero and the time of flight is not changing. By inspecting the solution process in

Ref. [6], specifically the momentum, semi-major axis, semi-latus rectum, eccentricity,

and apogee altitude equations,

HD = (Re + he)Ve cos γe (4.1)

aD =
µre

2µ− reV 2
e

(4.2)

eD =

√
1− pD

aD
(4.3)

pD =
H2
D

µ
(4.4)

ra = aD(1− eD) (4.5)

it is shown that the transfer orbit resulting from the impulsive solution is determined



www.manaraa.com

52

by the EI conditions. For every set of specified EI conditions, there is an altitude such

that for any altitude greater, there is no impulsive solution. Specifically, no impulsive

solution exists that places the vehicle on a Keplerian orbit to the required EI conditions.

For the case with flight path angle of −1 degrees and velocity of 7879.5 m/s, the transfer

orbit apogee altitude is 340 km. Therefore, any initial circular orbit with altitude greater

than 340 km will not have an impulsive solution. Figure 4.1 shows the impulsive results

for initial circular orbit altitudes starting at 200 km and increasing to 340 km. The

impulse decreases as altitude increases from 200 km to 340 km.

Figure 4.1 Impulse solution for circular orbits with altitude 200 to 340 km
(cases 1 - 15). EI conditions are fixed with flight path angle of
−1, velocity of 7879.5 m/s, and altitude of 120 km.

The transfer orbit apogee altitude for the extreme cases of flight path angle and

velocity for the variable formulation in terminal conditions Set 3 is shown in Table 4.3.
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Table 4.3 Apogee altitude of transfer orbit for given cases of EI flight path
angle and velocity.

EI γ (deg) EI Velocity (m/s) ra of Transfer Orbit (km)

-.805 7884.66 338
-1 7879.5 340

-1.6 7863.87 364

Table 4.3 shows that the transfer orbit apogee is dependent on the EI conditions. For

the entry conditions targeted by a Shuttle type vehicle, no impulsive solution exists, for

altitudes higher than 364 km.

4.2 Coast-Burn-Coast Solution for Low Altitude Orbits

Using the variable formulations of flight path angle and velocity at EI for the Shuttle,

Eqs. (3.102) and (3.103), in terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77),

(3.80), and (3.54)) and a desired CBC solution, results are shown in Table 4.4. The 1-st

column is the case number corresponding to Table 4.1. The 2-nd column is the manual

coast needed to target the desired 1HAC positions. A manual coast in the range of

20000 to 30000 seconds means the closest 1HAC was targeted while a manual coast time

greater than 80000 seconds means the second desired 1HAC was targeted. The 3-rd,

4-th, and 5-th columns are the times of the three arcs for the optimal coast-burn-coast

solution. Using the rocket equation, Eq. (2.22), with engine Isp of 313 seconds, the ∆V

is calculated given the initial mass and final mass after the burn time. This is shown in

column 6. The final crossrange distance at EI is given in column 7 and the flight path

angle at EI is given in column 8. The crossrange distance tolerance is set to 1000 km or

.1568 radians. The distance in radians is found by dividing the crossrange distance in

kilometers by the radius of the Earth.

For cases 1 through 15, the burn time decreases as the altitude increases. For the low

altitude deorbit, longer burn time is required to place the vehicle on the correct transfer
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Table 4.4 Results for circular cases 1 - 20 with coast-burn-coast formula-
tion, set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))
terminal constraints and constrained crossrange

Case M CT (s) CT 1(s) BT (s) CT 2 (s) ∆V (m/s) CR at EI FPA at EI (deg)

1 21652.89 1230.13 261.00 3270.55 146.7684 0.1840 -0.8050
2 21851.34 1067.91 261.00 3204.44 146.8950 0.1859 -0.8050
3 21864.82 1058.00 260.45 3138.63 146.3713 0.1899 -0.8050
4 23013.34 0.00 258.00 3072.55 145.2724 0.1885 -0.8050
5 23196.90 0.00 255.00 3006.25 143.3690 0.1812 -0.8050
6 26390.50 1838.33 250.00 795.99 140.8005 0.0000 -0.8050
7 26264.13 1968.50 268.00 736.39 150.6843 0.0032 -1.0367
8 79972.28 1965.91 238.00 946.94 133.5259 0.1478 -0.8050
9 80037.75 2162.00 235.13 1025.81 131.7557 0.1262 -0.8050
10 80268.34 2202.72 219.00 1116.88 122.8347 0.1041 -0.8050
11 80459.07 1671.63 207.00 1212.73 115.9044 0.1205 -0.8050
12 22432.83 1550.13 192.00 2472.39 107.7281 0.1691 -0.8050
13 23056.68 1324.74 175.00 2362.08 97.8398 0.1518 -0.8050
14 22435.57 2103.42 153.00 2214.77 85.7313 0.1525 -0.8050
15 84193.23 0.00 146.00 1827.62 81.2099 0.0470 -0.9973
16 26478.46 1473.99 168.00 1619.76 93.9454 0.0287 -1.2912
17 26577.45 1449.71 189.00 1519.83 105.6377 0.0284 -1.5131
18 26606.49 1136.89 245.00 1463.16 137.8438 0.0102 -1.6000
19 26650.55 1184.72 349.00 1408.17 197.7588 0.0192 -1.6000
20 26854.66 827.31 431.00 1368.52 246.2557 0.0121 -1.6000

orbit, which will ensure that the vehicle has the required flight path angle and velocity

at EI. The crossrange distance at EI varies between the cases. The largest crossrange

distance at EI is 1211 km and the smallest is less than a kilometer.

For cases 1 - 5, the vehicle is placed on a transfer orbit that has an apogee altitude

higher than the initial orbit altitude. As stated in Section 4.1, the EI conditions specify

the transfer orbit characteristics. For the specified flight path angle of cases 1 - 5, the

apogee altitude of the transfer orbit is 340 km. The vehicle enters the transfer orbit

at an preapogee position and must travel through apogee to reach EI with the specified

conditions. Figure 4.2 shows the change in altitude of the vehicle during the deorbit

maneuver. The vehicle has an increase in altitude, which corresponds to a thrust angle

that is greater than 180 degrees and decreasing linearly. The thrust angle of the vehicle

for cases 1 - 10 is shown in Figure 4.3. Appendix D gives a thorough description of

thrust angle and the method used to deduce whether the angle is greater or less than
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180 degrees. A thrust angle greater than 180 degrees is necessary to place the vehicle

on a transfer orbit in a preapogee position. Figure 4.4 shows the in-plane trajectory of

the vehicle for case 1. Coast 1 in Figure 4.4 is the optimal coast time determined by the

solution after the manual coast is complete. The transfer orbit, after burn is complete,

is an elliptic orbit with apogee altitude greater than the initial orbit altitude for the

CBC solution. There is no increase in altitude on the transfer orbit for cases 6 to 11,

which corresponds to a linear decreasing thrust angle less than 180 degrees. The vehicle

enters the transfer orbit on a post apogee position and the vehicle altitude decreases as

it travels to EI.

Figure 4.2 Vehicle altitude during flight for coast-burn-coast solution of cir-
cular cases 1 through 10

Cases 12, 13, and 14 have the same trend as cases 1 through 5 with the increase in

altitude of the transfer orbit to 340 km as shown in Figure 4.5. The thrust angles of
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Figure 4.3 Thrust angle during burn for coast-burn-coast solution of circu-
lar cases 1 through 10

cases 12, 13, and 14 also follow the same pattern of thrust angle greater than 180 degrees

that decreases linearly. The thrust angle for cases 11 - 17 is shown in Figure 4.6. Cases

16 and 17 resemble a braking maneuver with piecewise linear thrust angle very close to

180 degrees. The flight path angle targeted at EI in case 16 and 17 allows for transfer

orbit apogee altitude that intersects the initial circular orbit plane.

For initial orbit altitudes corresponding to 370 km and higher, a rapid increase in

burn time exists. This is because there is no Keplerian elliptic orbit that the vehicle

could travel on that would intersect EI with the required EI conditions. Therefore, a

longer burn time is required to place the vehicle on an orbit that would meet the required

EI conditions. Figure 4.7 shows the thrust angle for cases 18 - 20. The thrust angle

increases from greater than 100 degrees to greater than 200 degrees during the burn.

At the beginning of the burn, a decrease in velocity occurs and this is shown by the

beginning portion of the thrust angle. An increase in velocity occurs at the end on the
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Figure 4.4 Inplane trajectory of Case 1
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burn and this is shown by the thrust angle.

Figure 4.5 Vehicle altitude during flight for coast-burn-coast solution of cir-
cular cases 11 through 20

The inplane trajectory for Case 6 and 16 is shown in Figures 4.8 and 4.9. Coast 1

in Figures 4.8 and 4.9 denotes the optimal coast found in the CBC solution and not the

manual coast needed to meet the timing requirement to ensure a maneuver within the

specified crossrange distance tolerance. After the manual coast is over and guidance be-

gins, the vehicle continues to coast a specified time determined by the guidance solution.

The vehicle then burns to place itself on a transfer orbit necessary to meet the required

EI conditions. After the burn is completed the vehicle coasts to EI.

Figure 4.10 shows the change in ∆V as initial orbit altitude increases for cases 1 -

20. The ∆V decreases as altitude increases from 200 km to 340 km. This corresponds to
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Figure 4.6 Thrust angle during burn for coast-burn-coast solution of circu-
lar cases 11 through 17
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Figure 4.7 Thrust angle during burn for coast-burn-coast solution of circu-
lar cases 18 through 20
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Figure 4.8 Inplane trajectory of Case 6
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Figure 4.9 Inplane trajectory of Case 16
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the impulsive results. After 340 km the ∆V increases dramatically. The orbit altitude

of the International Space Station is approximately 340 km. For most Shuttle missions

the Orbiter returns from the International Space Station orbit with a burn time of

approximately 2.5 minutes, which corresponds to a ∆V of less than 100 m/s. This

coincides with the numerical results in Table 4.4 that show the shortest burn time for

deorbit from an altitude of 340 km.

Figure 4.10 ∆V of coast-burn-coast solutions with terminal conditions set 3
(Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) for cases
1 - 20

As shown in Table 4.4, case 7 has an increase in burn time when it should be decreas-

ing. This is attributed to the variable EI conditions of flight path angle and velocity.

Since a range of values can be targeted at EI, this variation in burn time is allowable.

Both case 6 and case 8 have a final EI flight path angle of −.805 deg while case 7 has



www.manaraa.com

64

a final EI flight path angle of −1.0367 deg. Also, the crossrange distance at EI for case

7 is much smaller than the other cases. The longer burn time was necessary to achieve

the required EI values that were targeted and be within the required crossrange distance

tolerance. The targeted EI conditions of case 7 are different from the previous and sub-

sequent cases because of the manual coast. The algorithm did not find a solution that

met the crossrange and burn time constraints such that the targeted EI conditions of

cases 6 and 8 were met. The algorithm found a solution that met the constraints and

appropriate EI conditions with an increased burn time.

EI conditions of flight path angle and velocity are fixed for the results in Table 4.5,

which is setup the same way as Table 4.4. The targeted conditions are a flight path angle

of −1 degrees and a corresponding velocity of 7879.5 m/s from the Shuttle functional

relationships. The results show the decrease in burn time as the altitude of the orbit

increases until an altitude of 340 km and then the burn time increases sharply. This

coincides with the Space Shuttle deorbiting from the International Space Station at 340

km.

Comparing the variable EI conditions of terminal conditions set 3 (Eqs. (3.66)–

(3.68), (3.76), (3.77), (3.80), and (3.54)) and the specified EI conditions of set 5 (Eqs.

(3.90)–(3.97) and (3.54)) , there is a significant difference in burn time, especially for

Case 1 with a difference of 17 seconds. This is a significant difference given that fuel

conservation is a major goal in space flight. Allowing for variable flight path angle and

velocity relations at EI results in smaller burn times for the majority of the low altitude

cases. As the initial orbit altitude increases, the difference in burn time is less. The

other noticeable difference is in the initial coast time found as part of the CBC solution.

As shown in Table 4.5, the optimal initial coast time was found to be zero as part of

the guidance solution for all cases except 4, 5, 10, and 16 - 20. The values of crossrange

distance at EI are within standard tolerances with the largest EI crossrange distance

being 1205 km (Case 10) and the smallest is 47 km (Case 19).



www.manaraa.com

65

Table 4.5 Results for circular cases 1 - 20 with coast-burn-coast formulation,
set 5 (Eqs. (3.90)–(3.97) and (3.54)) terminal constraints and
constrained crossrange

Case M CT (s) CT 1(s) BT (s) CT 2 (s) ∆V (m/s) CR at EI FPA at EI (deg)

1 24137.89 0.00 278.00 3069.52 156.9948 0.1155 -0.9711
2 24196.34 0.00 276.00 3010.76 156.4405 0.1157 -0.9703
3 23514.82 0.00 276.00 2949.05 155.7593 0.1632 -0.9730
4 21583.34 255.14 273.00 5871.10 154.0398 0.0837 -0.9745
5 21431.90 399.00 269.68 5936.78 151.8254 0.0802 -0.9725
6 23650.50 0.00 269.99 2767.40 152.3673 0.1665 -0.9680
7 23724.13 0.00 258.00 2704.50 145.4507 0.1666 -0.9681
8 23487.80 0.00 250.00 2639.80 140.8751 0.1863 -0.9667
9 23851.50 0.00 241.00 2571.77 135.6583 0.1680 -0.9670
10 22260.24 1346.28 229.00 2500.49 128.8536 0.1890 -0.9637
11 23934.02 0.00 218.00 2423.53 122.4978 0.1680 -0.9641
12 23947.83 0.00 203.00 2339.17 114.0078 0.1792 -0.9599
13 23911.68 0.00 185.00 2238.88 103.7247 0.1890 -0.9585
14 24080.57 0.00 164.00 2110.19 91.7796 0.1878 -0.9564
15 29259.50 0.00 136.00 1758.26 76.6165 0.1192 -0.9478
16 81709.59 1255.96 274.00 1714.84 154.2706 0.0307 -1.0000
17 81506.08 948.55 381.00 1613.64 217.0116 0.0630 -1.0000
18 81657.70 1138.90 454.00 1632.28 260.1319 0.0353 -1.0000
19 82519.44 782.03 528.00 1492.60 304.3873 0.0074 -1.0000
20 82116.31 1142.65 623.00 1271.82 362.7329 0.0180 -1.0000

Figure 4.11 shows the change in ∆V as initial orbit altitude increases for cases 1 -

20 for the fixed EI flight path angle and velocity. ∆V decreases as altitude increases

from 200 km to 340 km. After 340 km, ∆V increases dramatically. Figure 4.11 shows

the same trend as Figure 4.10. This coincides with the impulsive results in Section

4.1. After 370 km altitude, the impulse increases dramatically because more thrust is

required to place the vehicle on a Keplerian orbit that will intersect EI with the correct

conditions. The targeted flight path angle changes when the altitude increased from 340

km altitude to the higher altitudes. The new targeted flight path angle corresponds to

a transfer orbit with higher apogee altitude (see Table 4.3). To illustrate the rapid rise

in ∆V more clearly, Figure 4.12 shows the plot for select cases from 1 to 22. As shown

for case 22, the required ∆V to deorbit is very large, over 2600 m/s.
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Figure 4.11 ∆V of coast-burn-coast solutions with terminal conditions set
5 (Eqs. (3.90)–(3.97) and (3.54)) for cases 1 - 20
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Figure 4.12 ∆V of coast-burn-coast solutions with terminal conditions set
5 (Eqs. (3.90)–(3.97) and (3.54)) for cases 1 - 22
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Table 4.6 Results for circular cases 1 - 20 with coast-burn-coast formula-
tion, set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))
terminal constraints and unconstrained crossrange

Case M CT (s) CT 1(s) BT (s) CT 2 (s) ∆V (m/s) CR at EI FPA at EI (deg)

1 21352.89 1170.68 261.00 3270.50 146.7741 0.2070 -0.8050
2 21331.34 948.36 261.00 3204.35 146.8950 0.2268 -0.8050
3 21359.82 1049.13 260.00 3138.55 146.3713 0.2228 -0.8050
4 21533.34 769.08 258.00 3072.61 145.1976 0.2339 -0.8050
5 21611.90 784.03 255.00 3006.18 143.3575 0.2324 -0.8050
6 21490.50 713.00 250.95 2939.68 140.8234 0.2492 -0.8050
7 21629.13 854.03 245.00 2870.55 137.5856 0.2361 -0.8050
8 75807.28 503.15 238.00 6267.70 133.5259 0.1674 -0.8050
9 75702.75 615.01 229.00 2726.89 128.6819 0.3934 -0.8050
10 75928.34 789.40 219.00 2649.01 122.8632 0.3735 -0.8050
11 76124.07 940.05 207.00 2565.03 115.9443 0.3576 -0.8050
12 21842.83 1422.99 192.00 2472.23 107.7224 0.2149 -0.8050
13 21866.68 1465.79 175.00 2361.84 97.8341 0.2188 -0.8050
14 22435.57 2103.42 153.00 2214.77 85.7313 0.1525 -0.8050
15 78768.23 0.00 144.00 1769.59 80.3256 0.3037 -0.9849
16 26478.46 1473.99 168.00 1619.76 93.9454 0.0287 -1.2912
17 26577.45 1449.71 189.00 1519.83 105.6377 0.0284 -1.5131
18 80072.70 10.66 245.00 1459.95 137.5913 0.2331 -1.6000
19 80329.44 0.00 349.00 1427.66 197.8641 0.2128 -1.6000
20 79861.31 0.00 451.00 1493.36 258.3111 0.2320 -1.6000

4.3 Unconstrained vs. Constrained Crossrange

The effect of the crossrange distance constraint on the solution is examined. Cases

1 - 20 are run without the crossrange distance constraint in the outer loop and results

are shown in Table 4.6. Table 4.6 is constructed the same as Table 4.5. The largest

crossrange value at EI is in case 9 at a value of 2509 km. This crossrange distance

is unacceptably high and the vehicle will not be able to cover such a long crossrange

distance during the entry phase of flight.

Table 4.7 shows the differences in burn time and the final crossrange distance at EI

for both the constrained and unconstrained cases. Column 1 is the case number, column

2 is the difference in burn time between the two methods, column 3 is the crossrange

distance at EI with the outerloop constraint, and column 4 is the crossrange distance

without the outerloop constraint. The burn time does not vary for most cases between

the constrained and unconstrained crossrange distance cases. Case 7 has the largest
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difference in burn time. The final EI flight path angle for the unconstrained case is −.805

degrees while for the constrained case is −1.0367 degrees. The variable flight path angle

and velocity at EI are the cause of this difference in burn time and not the crossrange

distance constraint. The final coast time from the end of the burn to EI does not differ

greatly from the final coast for the constrained cases. The area of significant difference

is in the initial coast time of the combined manual coast and initial coast of the CBC

solution. Different 1HAC vectors are targeted in the solutions so a direct comparison

cannot be made between the constrained and unconstrained solutions. However, since

the burn time and final coast times do not vary dramatically, the only other variation

comes from initial coast time. Case 16 and 17 met the crossrange tolerance by chance.

The manual coast times for these cases are long enough so that the optimal CBC solution

meets the tolerance naturally. There is a significant difference in final crossrange distance

at EI between the constrained and unconstrained cases. The unconstrained cases differ

by upwards of 1000 km from the constrained cases. The final crossrange at EI for cases

14, 16, and 17 are the same. This is because the optimal solution of the constrained

problem is also an optimal solution for the unconstrained problem.

4.4 Single vs. Multiple Burn Solutions for High Altitude

Orbit

For higher altitude circular orbits, multiple burns are a more effective method for

the deorbit maneuver. For example, when the Space Shuttle completes a mission to the

Hubble Telescope, a two burn maneuver is used to reach the high altitude of Hubble.

For altitudes higher than 370 km, the burn time increases rapidly in the single burn

case. BC results for higher altitude orbits are shown in Table 4.8. Column 1 is the case

number, column 2 is the manual coast time, and columns 3 and 4 list the burn time,

and final coast time all in seconds. Column 5 is the equivalent impulse of the burn
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Table 4.7 Difference in burn time and crossrange at EI between the con-
strained and unconstrained crossrange coast-burn-coast solutions
for cases 1 - 20

Case BT Diff(s) CR at EI with constraint (km) CR at EI without constraint (km)

1 0 1173 1320
2 0 1185 1446
3 .45 1211 1421
4 0 1202 1491
5 0 1155 1482
6 .95 0 1590
7 23 20 1505
8 0 942 1067
9 6.13 804 2509
10 0 663 2382
11 0 768 2280
12 0 1078 1370
13 0 968 1395
14 0 972 972
15 2 299 1936
16 0 183 183
17 0 181 181
18 0 65 1486
19 0 122 1357
20 0 77 1479

time, column 6 is the crossrange at EI and column 7 is the flight path angle at EI. The

burn time can be almost 2500 seconds for an altitude of 1100 km. This is unacceptable

for a shuttle type vehicle with weight constraints. There would not be enough fuel to

complete a 2500 second burn. The final mass at the end of the burn is not negative but

for a burn time of 2500 seconds, the mass decreases around 40000 kg. The Shuttle does

not have 40000 kg of fuel readily accessible to burn for such a maneuver.

For cases 21 - 28, the altitude of the orbit is so large that no impulsive solution exists

that targets the appropriate EI conditions. The large burn times of the BC solution are

necessary to place the vehicle on a Keplerian orbit that intersects EI with the required

EI conditions met. The vehicle has to burn to compensate for the difference in altitude

between the initial orbit and the desired transfer orbit. To see if the requirement on

large amounts of propellant can be replaced, multiple burns are used. More specifically,

a two burn solution with an intermediate coast for the BCB solution and two burns with
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Table 4.8 Results for circular cases 21 - 28 with burn-coast formulation, set
3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) terminal
constraints and constrained crossrange

Case M CT (s) BT (s) CT (s) ∆V (m/s) CR at EI FPA at EI (deg)

21 22298.80 1199.00 3050.93 740.4153 0.1754 -0.8050
22 22892.21 1328.00 2716.51 832.1036 0.1506 -0.8050
23 26019.22 1307.00 855.49 817.0973 0.0710 -0.8050
24 25168.60 1496.00 943.09 955.3187 0.1077 -0.8050
25 22451.70 1827.00 674.96 1213.6192 0.2773 -1.6001
26 23307.45 1840.00 447.91 1224.3499 0.2363 -1.6000
27 23180.81 2132.00 577.89 1472.8062 0.2175 -1.6001
28 24981.79 2491.00 3881.10 1805.5433 0.1320 -1.3452

Table 4.9 Results for circular cases 21 - 28 with burn-coast-burn-coast for-
mulation, terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76),
(3.77), (3.80), and (3.54)) and constrained crossrange

Case M CT (s) BT 1(s) CT 1 (s) BT 2 (s) CT 2 ∆V 1 (m/s) ∆V 2 (m/s) CR at EI FPA at EI (deg)

21 78248.31 240.00 2769.72 134.00 4046.53 134.6148 78.0426 0.0019 -0.8050
22 23162.21 283.00 1998.62 236.00 2283.62 159.8659 139.7210 0.0849 -0.8050
23 23359.22 210.00 2985.19 315.00 2022.00 117.9562 185.1712 0.0255 -1.0295
24 21213.60 269.00 2941.11 324.00 1896.05 151.4162 192.7081 0.1693 -0.8050
25 19566.70 328.00 1757.58 281.00 6069.51 185.7052 168.5805 0.0824 -0.8050
26 21992.45 276.00 2444.15 383.00 1920.93 155.4823 229.5779 0.1455 -0.8050
27 78123.25 329.00 2325.53 426.00 1937.13 186.4047 259.2863 0.1466 -0.8050
28 23176.79 366.00 2435.17 459.00 1962.66 208.0804 282.2811 0.0570 -0.8050

an intermediate and final coast for the BCBC solution. An initial coast outside of the

manual coast is avoided because the algorithm has a hard time handling more than four

arcs numerically. Table 4.9 shows the results of the BCBC solution for cases 21 through

28. Column 1 is the case number, column 2 is the manual coast time, and columns 3, 4,

5 and 6 list the first burn time, intermediate coast time, final burn time, and final coast

time all in seconds. Columns 7 and 8 are the equivalent impulses of the corresponding

burn times, column 9 is the crossrange at EI and column 10 is the flight path angle at

EI.

The altitude for cases 21 - 28 with the BCBC solution is shown in Figure 4.13. The

corresponding thrust angles for the first and second burns are shown in Figures 4.14 and
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4.15. The trend of the thrust angle for the first burn is the same for cases 21 - 28. The

thrust angles greater than 180 degrees are for cases 23 and 24 and this corresponds to an

increase in altitude during the first burn. For cases 21 and 25 the altitude of the vehicle

goes below EI altitude. The second burn thrust angle for these cases differs from the

trend of the other cases. Case 25 has an increasing thrust angle greater than 180 degrees.

The thrust angle for case 21 is less than 180 degrees and has a different pattern than

the other angles. The different thrust angle pattern correspond to the vehicle altitude

going below EI altitude.

Figure 4.13 Altitude for cases 21 - 28 with burn-coast-burn-coast solu-
tion and terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76),
(3.77), (3.80), and (3.54)).

In previous work a multiple burn maneuver was constructed by first burning to an

intermediate orbit and then after completing one period of the intermediate transfer
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Figure 4.14 Thrust angle during first burn for burn-coast-burn-coast solu-
tion of circular cases 21 through 28

Figure 4.15 Thrust angle during second burn for burn-coast-burn-coast so-
lution of circular cases 21 through 28
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orbit, burning to a transfer orbit to get to EI. Column 4 in Table 4.9 shows the interme-

diate coast times of the flights. The coast times in column 4 of Table 4.9 are too small

to represent one full orbital period on the intermediate transfer orbit. The final coast

times for cases 21 and 25 is significantly longer than the final coast in the other cases.

The vehicle coasts on the final transfer orbit for more than half the period of the orbit.

The final transfer orbit must intersect with the EI orbit of 120 km altitude at some point

or points along the trajectory and therefore must have an orbit altitude less than 120

km for some part of the orbit. The longer the vehicle stays on the final transfer orbit,

the more likely the vehicle will travel below the EI altitude of 120 km. For example, the

final coast for case 25 is greater than 6000 seconds. During the final coast the vehicle

travels below an altitude of 120 km. There is no constraint in the solution process that

keeps this type of trajectory from occurring. Figures 4.16 and 4.17 show sample BCBC

coast trajectories for cases 25 and 26. Figure 4.16 shows the final trajectory traveling

below the 120 km altitude of EI and then increasing in altitude till reaching EI with the

required conditions met.

The final coast is removed and Cases 21 through 28 are run using a BCB solution.

The results are shown in Table 4.10 where column 1 is the case number, 2 is the manual

coast time, columns 3,4, and 5 are the first burn time, intermediate coast time, and

final burn time, columns 6 and 7 are the equivalent impulses of the corresponding burns

times, column 8 is the crossrange at EI, and column 9 is the flight path angle at EI.

Inplane trajectories for cases 25 and 26 are shown in Figures 4.18 and 4.19. By not

allowing the final coast, the vehicle never goes below an altitude of 120 km.

Table 4.11 shows the total burn times and ∆V of each type of solution from cases 21

through 28. Column 1 is the case number, columns 2 and 3 are the BC burn time and its

corresponding ∆V , columns 4 and 5 are the BCBC burn time and its corresponding ∆V ,

and columns 6 and 7 are the BCB burn time and its corresponding ∆V . For cases 22

through 28, multiple burns yielded much smaller total burn times with the BCB solution
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Figure 4.16 Inplane trajectory of Case 25 with burn-coast-burn-coast tra-
jectory

Table 4.10 Results for circular cases 21 - 28 with burn-coast-burn formu-
lation, terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76),
(3.77), (3.80), and (3.54)) and constrained crossrange

Case M CT (s) BT 1(s) CT (s) BT 2 (s) ∆V 1 (m/s) ∆V 2 (m/s) CR at EI FPA at EI (deg)

21 25683.80 241.00 2210.00 134.00 135.2798 77.3834 0.0655 -1.6004
22 23337.21 234.00 2504.00 148.00 131.6584 85.8360 0.1962 -0.8053
23 23279.22 272.00 2527.00 192.00 153.0651 112.7210 0.1933 -0.8049
24 23383.60 326.00 2575.00 257.00 184.5747 152.9777 0.1760 -0.8046
25 23841.70 361.00 1806.00 241.00 204.8530 144.6582 0.1945 -1.7884
26 24342.45 375.00 2087.00 288.00 213.0808 173.9578 0.1407 -1.4174
27 80063.25 403.00 2339.00 316.00 229.6619 192.3832 0.1479 -0.8096
28 81702.15 444.00 2263.00 347.00 253.8444 213.6566 0.0434 -0.8445
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Figure 4.17 Inplane trajectory of Case 26 with burn-coast-burn-coast tra-
jectory
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Figure 4.18 Inplane trajectory of Case 25 with burn-coast-burn trajectory
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Figure 4.19 Inplane trajectory of Case 26 with burn-coast-burn trajectory
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Table 4.11 ∆V and Burn Time for burn-coast, burn-coast-burn-coast, and
burn-coast-burn solutions for cases 21 - 28 with constrained
crossrange and terminal conditions set 3 (Eqs. (3.66)–(3.68),
(3.76), (3.77), (3.80), and (3.54))

Case BC BT (s) BC ∆V (m/s) BCBC BT (s) BCBC ∆V (m/s) BCB BT (s) BCB ∆V (m/s)

21 1199.00 740.4153 374.00 212.66 374.27 212.66
22 1328.00 832.1036 519.00 299.59 381.81 217.49
23 1307.00 817.0973 525.00 303.13 463.91 265.79
24 1496.00 955.3187 593.00 344.12 582.13 337.55
25 1827.00 1213.6192 609.00 354.29 601.93 349.51
26 1840.00 1224.3499 659.00 385.06 662.58 387.04
27 2132.00 1472.8062 755.00 445.69 718.40 422.05
28 2491.00 1805.5433 825.00 490.36 790.34 467.50

yielding the smallest of all total burn times. For vehicles like NASA’s Space Shuttle,

BCB is a completely impractical solution. Because the vehicle has to rotate in order to

rotate its engines during a burn, the vehicle will not be in a suitable alignment once it

reaches entry. Depending on the thrust vector direction, during a BCB flight the vehicle

could reach entry and go into the atmosphere engines first, which is undesirable. Figure

4.20 shows the variation of ∆V over initial orbit altitude for the BC, BCBC, and BCB

formulations. The BC solution has high ∆V in comparison to the two burn maneuvers.

For altitudes of 400, 700, 800, and 900 km the difference in burn time of the two burn

maneuvers is less than 11 seconds. For the other altitudes, the burn times differ by

more than 30 seconds. The manual coast times differ between the different solution

formulations for each case. This means that the optimal control problem is solved with

different initial conditions, as well as a different number of arcs. It is difficult to directly

compare the two burn maneuvers with each other because two different problems are

being solved.

4.5 Summary

The major findings in this chapter are as follows:
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Figure 4.20 ∆V for cases 21 - 28 for burn-coast, burn-coast-burn-coast, and
burn-coast-burn solutions with terminal conditions set 3 (Eqs.
(3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))
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• The EI conditions determine the transfer orbit of the deorbit maneuver. There

is a specified altitude, such that for any higher altitude, there does not exist an

impulsive solution that places the vehicle on a Keplerian transfer orbit to meet the

required EI conditions.

• For low altitude circular orbits, the burn time decreases as altitude increases till

an orbit altitude of 340 km. After 340 km, as altitude increases, the burn time

increases. The burn times agree with Shuttle mission data for missions that deor-

bited from the International Space Station orbit.

• A crossrange constraint at EI has little effect on required burn time for the vehicle

to deorbit safely. If the crossrange is not constrained, the vehicle would be required

to travel a large crossrange distance during entry, which is undesirable.

• Allowing for variable velocity and flight path angle at EI allows for a range of

values to be targeted, with the final values at EI being determined by the guidance

solution. Unexpected increases or decreases in burn time are accounted for by the

variable EI conditions.

• Single burns for high altitude orbits are not optimal. Burn time increases rapidly

with increasing altitude after 340 km. The two burn maneuver with or without

final coast has shorter total burn time than the single burn maneuver.
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CHAPTER 5. Single Burn Deorbit Guidance for Initial

Elliptic Orbit

The Shuttle generally deorbits from circular orbits about the Earth. Consequently,

there is not much previous Shuttle work to use as a guide in studying the elliptic deorbit

problem. Refs. [5], [8], and [9] state that the optimal deorbit point is at apogee on

an elliptic orbit of eccentricity greater than .01 for EI conditions constrained by flight

path angle and altitude. For orbits with lower eccentricity, the optimal deorbit point is

nonapogee. This chapter explores the single finite time burn for elliptic orbits. More

specifically, Section 1 explores the optimal coast-burn-coast solution for the elliptic or-

bit. The deorbit problem is solved using impulsive maneuvers in Section 2. Section 3

compares the impulsive results with nominal burn and ten time nominal burn results.

The altitude is unconstrained in the algorithm and Section 4 explores the ramifications

of this. The results of the chapter are summarized in the final section. The cases tested

are listed in Table 5.1 where e is the eccentricity of the initial orbit, i is the inclination

of the initial orbit, Ω is the longitude of the ascending node, X, Y , and Z are the com-

ponents of the position in the ECI frame, and Ẋ, Ẏ , and Ż are the components of the

velocity in the ECI frame. All results assume Keplerian motion for the coast arcs.

5.1 Solution for Low Altitude Orbits

The CBC formulation is used to solve the deorbit guidance problem for elliptic orbits.

Table 5.2 shows the results for cases 1 through 20 with terminal constraints set 3 (Eqs.
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Table 5.1 Test Cases for Elliptical Orbits

Case Perigee Altitude (km) e i (deg) Ω (deg) X (km) Y (km) Z (km) Ẋ (km/s) Ẏ (km/s) Ż(km/s)

1 200 0.02 50 240 1541.808 -4725.575 4407.144 5.568 4.492 3.070
2 200 0.04 50 240 1556.627 -4770.996 4449.504 5.599 4.400 3.157
3 200 0.06 50 240 1571.159 -4815.535 4491.041 5.630 4.309 3.243
4 200 0.08 50 240 1585.411 -4859.217 4531.780 5.661 4.221 3.328
5 200 0.10 50 240 1599.392 -4902.067 4571.743 5.692 4.135 3.411
6 250 0.02 50 240 1553.527 -4761.495 4440.643 5.547 4.475 3.058
7 250 0.04 50 240 1568.459 -4807.261 4483.325 5.578 4.383 3.145
8 250 0.06 50 240 1583.101 -4852.138 4525.178 5.609 4.293 3.231
9 250 0.08 50 240 1597.462 -4896.152 4566.227 5.640 4.205 3.315
10 250 0.10 50 240 1611.549 -4939.328 4606.493 5.671 4.119 3.398
11 300 0.02 50 240 1565.247 -4797.414 4474.142 5.526 4.458 3.047
12 300 0.04 50 240 1580.291 -4843.526 4517.146 5.557 4.367 3.133
13 300 0.06 50 240 1595.044 -4888.741 4559.315 5.588 4.277 3.219
14 300 0.08 50 240 1609.513 -4933.088 4600.673 5.619 4.189 3.303
15 300 0.10 50 240 1623.706 -4976.589 4641.243 5.650 4.104 3.385
16 350 0.02 50 240 1576.966 -4833.334 4507.641 5.506 4.442 3.035
17 350 0.04 50 240 1592.124 -4879.790 4550.967 5.537 4.350 3.122
18 350 0.06 50 240 1606.987 -4925.345 4593.452 5.567 4.261 3.207
19 350 0.08 50 240 1621.564 -4970.023 4635.120 5.598 4.174 3.290
20 350 0.10 50 240 1635.863 -5013.850 4675.994 5.629 4.088 3.373
21 400 0.02 50 240 1588.686 -4869.253 4541.140 5.485 4.425 3.024
22 400 0.04 50 240 1603.956 -4916.055 4584.788 5.516 4.334 3.110
23 400 0.06 50 240 1618.929 -4961.948 4627.589 5.547 4.245 3.195
24 400 0.08 50 240 1633.615 -5006.959 4669.566 5.577 4.158 3.278
25 400 0.10 50 240 1648.020 -5051.112 4710.744 5.608 4.073 3.360
26 500 0.02 50 240 1612.125 -4941.093 4608.139 5.446 4.394 3.003
27 500 0.04 50 240 1627.620 -4988.585 4652.431 5.476 4.303 3.088
28 500 0.06 50 240 1642.815 -5035.155 4695.863 5.507 4.215 3.172
29 500 0.08 50 240 1657.717 -5080.830 4738.460 5.537 4.128 3.255
30 500 0.1 50 240 1672.335 -5125.634 4780.245 5.567 4.044 3.336
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Table 5.2 Results for coast-burn-coast solution with terminal constraints
set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))

Case M CT (s) CT 1(s) BT (s) CT 2 (s) ∆ V (m/s) ν at burn CR at EI FPA at EI (deg)

1 24846.3347 650.8512 128.0000 998.9871 71.4851 292.8292 0.1706 -0.8050
2 82066.4640 864.3285 309.0000 599.4942 174.6104 301.1641 0.1020 -1.6000
3 26498.4153 1099.0577 416.0000 692.9387 237.6660 314.7949 0.0374 -0.8050
4 81659.1289 818.6259 691.0000 272.5663 405.0271 299.3458 0.1275 -1.6000
5 28470.5842 807.7071 954.0000 25.9430 574.4288 295.4000 0.0619 -0.8050
6 25836.4056 1816.8086 215.0000 2029.1652 120.5628 58.8670 0.0388 -1.5063
7 25991.9158 1052.2498 316.0000 1005.2247 178.5387 318.3508 0.0592 -0.8050
8 81081.2544 772.8025 541.0000 2187.4833 312.5342 17.1648 0.0545 -0.8050
9 28676.7649 1063.0000 947.3422 1394.1813 569.2668 13.6654 0.1785 -1.6000
10 23263.6922 1079.3861 1092.0000 1446.8922 666.7196 4.7439 0.1541 -1.6000
11 81313.4752 876.9429 278.0000 1013.8847 156.5502 301.2840 0.1248 -1.6000
12 27150.8167 1122.5797 427.0000 1714.9962 243.7125 20.6198 0.0719 -1.6000
13 80889.6786 891.9058 566.0000 859.4004 327.6903 309.5097 0.1424 -1.6000
14 28903.7408 961.8619 712.0000 1555.2952 418.2014 359.1771 0.1818 -1.6000
15 84730.4221 2728.0714 885.0000 2113.6579 528.8143 312.2272 0.3211 -0.8280
16 82335.3259 1129.6057 317.0000 1218.4916 179.2075 324.2491 0.0278 -1.6000
17 27150.6886 1047.0813 488.0000 1211.6046 280.5744 354.2714 0.0388 -1.6000
18 29203.7754 0.0000 604.0000 1731.4250 351.1901 358.6241 0.1438 -1.6001
19 23986.4931 0.0000 823.0000 1462.1724 488.5277 359.6925 0.1931 -1.6001
20 80059.2847 1866.8114 1083.0000 2365.4611 660.5565 306.7991 0.0042 -0.8050

(3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) used. The 1-st column is the case number

corresponding to Table 4.1. The 2-nd column is the manual coast needed to target the

desired 1HAC positions. A manual coast in the range of 20000 to 30000 seconds means

the closest 1HAC was targeted while a manual coast time greater than 80000 seconds

means the second desired 1HAC was targeted. The 3-rd, 4-th, and 5-th columns are

the times of the three arcs for the optimal coast-burn-coast solution. Using the rocket

equation with an engine Isp of 313 seconds, the ∆V is calculated given the initial mass

and final mass after the burn time. This is shown in column 6. The true anomaly at

the beginning of the burn time is presented in column 7. The final crossrange at EI is

given in column 8 and the flight path angle at EI is given in column 9. The crossrange

distance tolerance at EI is set to 1000 km or .1568 radians.

The final crossrange at EI for cases 1, 9, 14, 15, and 19 is higher than the desired

.1568 radians. Case 15 is greater than .1568 radians by over .1568 radians or 1000 km.

The crossrange distance tolerance was met in the outerloop but when the closed loop
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simulation was called, the solution was updated each second and changed to reach the

desired EI conditions. Cases 1, 9, 14, and 19 are greater than the desired crossrange

distance by less than 250 km.

The optimal deorbit point is at a nonapogee position for highly eccentric orbits. The

optimal burn begins at a point that is near perigee instead of apogee. The transfer

orbit results from Section 4.1 hold for elliptic orbits as well. The same entry conditions

are used. Therefore, the transfer orbit altitudes for the targeted entry conditions vary

from 338 km to 364 km (see Table 4.3). For cases 16 - 20 with perigee altitude equal to

350 km, the optimal place to deorbit is close to perigee so the vehicle will travel on the

transfer orbit that meets the EI conditions.

As shown in Table 5.2, the burn time increases as eccentricity increases for a perigee

altitude orbit. This trend is shown in Figure 5.1. Figure 5.1 also shows the variation of

∆V over initial orbit eccentricity given the initial orbits perigee altitude.

The burn time for case 10 is higher than the burn time of case 15 by approximately

200 seconds. The longer burn time is caused by several different factors. A different

flight path angle at EI is targeted for each of the two cases. Also, case 10 targets the first

1HAC while the case 15 targets the second 1HAC . This is evident by the significantly

longer manual coast time for case 15. Targeting different 1HAC vectors means that

the CBC problem is solved given a different initial position between the cases. By the

problem setup, there exists a unique optimal solution given each initial position of the

vehicle on the initial orbit.

The same type of burn time discrepancy also occurs between case 9 and 19. The

largest difference in the solutions is the lack of an optimal initial coast in the CBC

solution for case 19. The manual coast in case 9 is greater than the manual coast in

case 19 by 4500 seconds. The initial position used for the optimal CBC simulation for

case 19 is farther along the orbit than the initial position of case 9. These factors all

contribute to the difference in burn time.
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Figure 5.1 ∆V of coast-burn-coast solutions with terminal conditions set 3
(Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) for cases
1 - 20
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5.2 Impulsive Deorbit Maneuver

In Refs. [5], [8] and [9], it is shown that the optimal deorbit point for minimum

∆V is at apogee. In section 2.5 it was shown, using the method presented in Ref. [8],

that for elliptic orbits with eccentricity greater than 0.01 the optimal deorbit point will

be apogee. For initial orbits with an eccentricity less than 0.01, the optimal deorbit

point will be off apogee. In these previous works, the EI flight path and EI altitude

are specified but the velocity is kept unconstrained. These leads to unacceptably large

EI velocity values. Figure 5.2 shows the EI velocity for each deorbit position from

the method presented in Ref. [8] for a flight path angle of −1 degrees, eccentricity of

0.06, and a perigee altitude of 200 km. Deorbiting from apogee yields the highest EI

velocity of 8.0827 km/s, which exceeds the highest acceptable values of 7.884 km/s for

EI velocity for shuttle-type vehicles. In Ref. [9] a relationship between flight path angle

and velocity was allowed in the formulation of the solution. The solution in the paper

was not reproduced because the equations are ill-conditioned. Inspecting the figures in

Ref. [9], the values of semi-major axis for the initial orbits placed the vehicles on an

orbit that naturally intersected the EI orbit without traveling on a transfer orbit.

Using the method from Ref. [8] with the EI velocity restricted yielded different

results. The approach from Ref. [8] is as follows:

The velocity impulse required to deorbit is

∆V = ṙE1 − ṙ1 (5.1)

where ṙ1 and ṙE1 are the velocity vectors before and after the deorbit impulse. The

velocity vectors may be rewritten as

ṙE1 = VE1 sin γE1U0 + VE1 cos γE1V0 (5.2)

ṙ1 = V1 sin γ1U0 + V1 cos γ1V0. (5.3)
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Figure 5.2 EI velocity versus true anomaly deorbit position for Orbit with
eccentricity of .06, perigee altitude of 200 km, and EI flight path
angle of -1 deg
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The speeds before and after deorbit are V1 and VE1, with respective flight path angles

γ1 and γE1. U0 is a unit vector in the direction of position vector r1 and V0 is a unit

vector advanced in plane 90 degrees from U0 in the direction of motion. Because the

∆V is impulsive, position vectors r1 and rE1 are identical. Define ξ = V1 cos γ1 and

η = V1 sin γ1. The square of the velocity impulse may then be written as

∆V 2 = V 2
E1 + V 2

1 − 2ξVE1 cos γE1 − 2ηVE1 sin γE1. (5.4)

Utilizing the laws of conservation of angular momentum and energy, γE1 and VE1 are

related to reentry conditions, denoted by subscript E1, by

V 2
E1 = α + V 2

E2 (5.5)

VE1 cos γE1 = λVE2 (5.6)

where VE2 is the reentry velocity, α = 2µ(1/rE1 − 1/rE2) and λ = rE2/rE1 cos γE2.

Defining a new independent variable ζ = VE1 sin γE1, VE1 and VE2 may be rewritten as

V 2
E1 =

ζ2 − λ2α

1− λ2
(5.7)

V 2
E2 =

ζ2 − α
1− λ2

(5.8)

and

VE1 cos γE1 = λ

√
ζ2 − α
1− λ2

. (5.9)

Impulse velocity may then be written as

∆V 2 =
ζ2 − λ2α

1− λ2
− 2ξλ

√
ζ2 − α
1− λ2

− 2ηζ + V 2
1 . (5.10)

Modern methods allow the finding of the minimum of Eq. (5.10) without taking the

partial derivatives with respect to ζ and setting Eq. (5.10) equal to zero. One such

method is Matlab’s fminunc to solve Eq. (5.10) for the minimum impulse and corre-

sponding position with the constraint of EI flight path angle and altitude. The altitude
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was constrained at 120 km and the flight path angle to -1 degrees. The results were the

same for cases 1 through 20 with the optimal deorbit point being at apogee for minimum

∆V .

Constraining the EI velocity changes the problem. The velocity at EI is constrained

using the following equation:

V ∗E2 −
√
ζ2 − α
1− λ2

= 0 (5.11)

where V ∗E2 is the desired EI velocity. Matlab’s fmincon with interior-point algorithm and

function tolerance of 1e-6 is used to solve Eq. (5.10) with the constraint Eq. (5.11).

This yields the impulsive thrust and optimal deorbit point for the given initial orbit

with restricted flight path angle, altitude, and velocity. The EI velocity and flight path

angle resulting from the CBC deorbit guidance solution for cases 1 through 20 was used

in Matlab’s fmincon as V ∗E2 and EI flight path angle. Table 5.3 shows the solution of

the minimization problem for cases 1 - 20. Column 1 is the case number, column 2 and

3 in the minimum impulse and location, column 4 is specified EI velocity and column 5

is the specified EI flight path angle.

In Ref. [8] it was noted that the true anomaly results are symmetric about apogee/perigee.

This holds true for the results in Table 5.3. The method presented in Ref. [8] does not

take into account the movement of the vehicle on the orbit, either prograde or retrograde.

Thus, the symmetry is based off of geometry but is not applicable to real space flight.

As shown in Table 5.3, the optimal deorbit point is not at apogee for the cases with

constrained velocity. The optimal deorbit point is closer to perigee. In Ref. [22] it is

shown that to achieve the greatest change in semi-major axis with respect to minimizing

∆V , the impulse should be applied at perigee, assuming a collinear burn. However, in

Ref. [8] there is no such assumption made. The results shown in Table 5.3 show the

minimum ∆V impulse and its location for the specified flight path angle and velocity

at EI. The impulse and its location place the vehicle on a transfer orbit that intersects
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Table 5.3 Impulsive maneuver results for case 1 - 20.

Case ∆VIMPULSE νIMPULSE at burn EI Velocity (m/s) EI FPA (deg)

1 72.8240 299.1480 7884.8759 -0.8050
2 149.5324 330.5239 7884.8717 -0.8050
3 225.5003 19.7267 7884.8714 -0.8050
4 300.7492 14.8850 7884.8706 -0.8050
5 397.7853 17.3032 7863.8424 -1.6000
6 121.0849 298.3927 7866.4491 -1.5063
7 178.3630 334.5276 7884.8737 -0.8050
8 275.7187 24.3088 7863.8674 -1.6001
9 351.4796 18.7068 7863.8502 -1.6000
10 406.4772 10.6489 7881.4832 -0.8280
11 153.2076 314.8305 7863.8448 -1.6000
12 229.3335 334.0101 7863.8507 -1.6000
13 304.7304 18.5582 7863.8468 -1.6000
14 379.4192 14.5516 7863.8567 -1.6001
15 453.4195 12.0354 7863.8593 -1.6000
16 181.6814 19.7148 7863.8474 -1.6000
17 257.5231 348.1829 7863.8458 -1.6000
18 332.6390 8.5886 7863.8405 -1.6000
19 407.0495 6.7983 7863.8455 -1.6000
20 480.7742 5.6631 7863.8517 -1.6001

with the EI orbit of 120 km altitude with the specified flight path angle and velocity

values.

5.3 Impulsive vs. Nominal Thrust Deorbit

As shown in the previous section, when EI velocity is constrained, the optimal deorbit

point is not at apogee but closer to perigee. Table 5.4 shows the results of CBC deor-

bit guidance solution with nominal thrust, ten times nominal thrust, and the impulse

results from Matlab’s fmincon. The guidance solution was run without the crossrange

constraint.

The ten times nominal thrust cases have burn times about ten times less than the

nominal thrust burn time. This gives a more representative optimal deorbit ∆V and

location to the impulsive answer than the nominal case. Restricting the EI velocity moves

the optimal deorbit point from apogee to near perigee. For a given perigee altitude orbit

the lower the eccentricity, the farthest from perigee the optimal deorbit point is and,
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Table 5.4 Elliptic orbit burn and location results for nominal thrust, ten
times thrust, and impulsive thrust

Case ∆VNOM νNOM at burn ∆V×10NOM ν×10NOM at burn ∆VIMPULSE νIMPULSE at burn

1 119.5929 81.5364 80.3200 314.1446 72.8240 299.1480
2 150.1657 314.7394 168.0086 317.9382 149.5324 330.5239
3 237.6660 314.8116 220.7293 18.5056 225.5003 19.7267
4 387.1319 308.8135 312.1576 2.6586 300.7492 14.8850
5 515.2163 291.6685 368.4867 7.7607 397.7853 17.3032
6 120.5628 58.4451 121.4245 295.8076 121.0849 298.3927
7 178.5387 318.4214 196.1852 324.2110 178.3630 334.5276
8 379.5361 21.9778 272.9914 2.0441 275.7187 24.3088
9 476.4646 8.7110 333.1219 3.5339 351.4796 18.7068
10 666.6787 290.9976 395.5766 9.2879 406.4772 10.6489
11 156.5502 301.5907 149.5781 313.6239 153.2076 314.8305
12 243.7125 20.4773 224.1504 332.3498 229.3335 334.0101
13 342.0568 8.9193 279.2341 14.6674 304.7304 18.5582
14 472.7698 359.3177 371.1478 12.4188 379.4192 14.5516
15 752.0423 307.1321 467.9419 18.0909 453.4195 12.0354
16 181.2846 12.4683 206.2609 12.0814 181.6814 19.7148
17 280.5744 354.1920 243.4512 356.7278 257.5231 348.1829
18 328.2031 350.9790 346.9118 3.7416 332.6390 8.5886
19 412.0338 338.4590 398.3862 4.4621 407.0495 6.7983
20 632.0678 304.9165 471.2662 3.7704 480.7742 5.6631

as eccentricity increases the closer the deorbit point is to perigee. This is clear in the

impulsive and ten times thrust case shown in Figures 5.3 and 5.4.

As eccentricity increases for the ten times nominal thrust cases, the optimal deorbit

position moves farther from perigee. This is because the ten times thrust cases are solved

using the guidance solution, which has the manual coast as part of the solution process.

The manual coast alters the solution process. For the nominal thrust case, shown in

Figure 5.5, the distance from perigee for the optimal deorbit position does not follow

the same pattern as the ten times nominal thrust and impulsive thrust cases. The burn

time of the nominal case is several hundred seconds. Due to long burn times, the true

anomaly at the beginning of the burn will differ greatly from the impulsive maneuver.

As the eccentricity increases, the length of the burn increases. Because the burn time is

so much longer, the farther from perigee the vehicle is when the burn begins.
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Figure 5.3 Optimal deorbit position distance from perigee of impulsive ∆V
versus eccentricity for given orbit perigee altitude values of 200
km, 250 km, 300 km, and 350 km
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Figure 5.4 Optimal deorbit position distance from perigee of x10 nominal
thrust ∆V versus eccentricity for given orbit perigee altitude
values of 200 km, 250 km, 300 km, and 350 km
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Figure 5.5 Optimal deorbit position distance from perigee of nominal thrust
∆V versus eccentricity for given orbit perigee altitude values of
200 km, 250 km, 300 km, and 350 km
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5.4 Unconstrained Altitude

As mentioned in the previous chapter, there is no altitude constraint in the problem

formulation. Therefore, the optimal solution may place the vehicle on an elliptic orbit

with perigee altitude less than zero. Figures 5.6 and 5.8 show the altitude for the BC

solution for cases 1 - 20. The thrust angle during the burn time of each test case BC

solution is shown in Figures 5.7 and 5.9. There is no discernable pattern of flight path

angle and altitude for the BC solution of elliptical cases 1 - 20.

Figure 5.6 Altitude for burn-coast solution for cases 1 - 10 with terminal
constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and
(3.54)) and constrained crossrange

In Figure 5.6 case 4, 7, and 9 have transfer orbits that travel below the EI altitude of

120 km with case 7 and 9 traveling below an altitude of zero or within the Earth. The
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Figure 5.7 Thrust angle for burn-coast solution for cases 1 - 10 with termi-
nal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80),
and (3.54)) and constrained crossrange
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transfer orbit has an apogee altitude the same as the initial orbit deorbit point altitude.

The vehicle then travels along the transfer orbit through perigee and apogee and back

towards perigee, where it reaches EI having satisfied the required conditions. Because

the perigee altitude of the transfer orbit is less than zero, the vehicle travels within the

Earth. This same type of solution is shown in cases 12, 13, 14, 18, and 19 in Figure 5.8.

The inplane trajectory for case 4 in Figure 5.10 shows the vehicle traveling within the

Earth. For cases 1, 2, 3, 5, 6, 8, and 10 the vehicle does not travel below EI altitude

because it meets the EI conditions of velocity, flight path angle, and altitude earlier on

the transfer orbit and does not have to keep coasting along the transfer orbit.

Figure 5.8 Altitude for burn-coast solution for cases 11 - 20 with terminal
constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and
(3.54)) and constrained crossrange

Cases 6, 7, 10, 15, and 10 in Figures 5.6 and 5.8 all begin the deorbit maneuver at a
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Figure 5.9 Thrust angle for burn-coast solution for cases 11 - 20 with termi-
nal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80),
and (3.54)) and constrained crossrange



www.manaraa.com

100

Figure 5.10 Inplane trajectory for case 4 burn-coast solution
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higher altitude than the other cases. The vehicle is farther away from perigee when the

burn begins than the other cases. This coincides with the results in Table 5.4 where the

burn begins at a distance of between 40 and 50 degrees from perigee.

In Figure 5.11, the BCBC solution vehicle altitude for cases 11 - 20 is shown. The

final transfer orbit has a perigee altitude less than zero altitude for those cases with

altitude less than zero. For the BCB solution, shown in Figure 5.12, the altitude of the

vehicle does not descend below EI until it has reached EI with the required constraints

met. The final coast and coast time is the determining factor in whether or not the

vehicle travels through Earth’s atmosphere on it’s final orbit. The final coast is crucial

for Shuttle type vehicles that need to rotate up to 180 degrees to direct the thrust vector

in the correct direction. If the Shuttle is not nose first with correct flight path angle

going into entry, the vehicle could burn upon entry. However, with the final coast being

part of the solution, the vehicle faces the chance of being placed in a final transfer orbit

with perigee less than zero altitude.

5.5 Summary

The major findings in this chapter are as follows:

• For a given initial orbit perigee altitude, the burn time increases as eccentricity

increases. As initial orbit perigee altitude increases, the burn time increases.

• If EI velocity is constrained, the optimal deorbit point for an initial elliptic orbit

is not apogee. In fact the burn begins closer to perigee than apogee. For higher

eccentricity orbits, the burn time increases and the optimal deorbit point moves

father away from perigee.

• The EI conditions determine the transfer orbit parameters. Impulse solutions exist

for those cases whose perigee altitude is equal to or less than the apogee altitude
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Figure 5.11 Altitude for burn-coast-burn-coast solution for cases 11 - 20
with terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76),
(3.77), (3.80), and (3.54)) and constrained crossrange
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Figure 5.12 Altitude for burn-coast-burn solution for cases 11 - 20 with
terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77),
(3.80), and (3.54)) and constrained crossrange
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of the transfer orbit.

• There is no altitude constraint in the problem formulation. The vehicle may be

placed on a transfer orbit with a perigee altitude less than zero.

• If the final coast time is long enough, the vehicle may travel into and out of Earth’s

atmosphere before reaching EI with the correct terminal conditions met. These

solutions are not possible and are avoided.
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CHAPTER 6. Multiple Burn Deorbit Guidance for Initial

Elliptic Orbit

The previous chapter explored the single deorbit burn for initial elliptic orbits. The

unconstrained altitude for both single and double burns was also explored. In Ref. [2],

the benefits of two burns are discussed. For certain cases, a two burn maneuver has a

smaller total ∆V than a single burn. The BC, BCB, and BCBC results for cases 1 -30

are presented in tables in this section. Section 1 presents the BC results and Section 2

presents the two burn maneuver results. A summary of results is presented in the final

section.

6.1 Single Burn Solution for Elliptic Orbit

The BC solution for cases 1 - 30 are shown in Table 6.1. Column 1 is the case

number, column 2 is the manual coast time, and columns 3 and 4 list the burn time,

and final coast time all in seconds. Column 5 is the equivalent impulse of the burns

time, column 6 is the crossrange distance at EI and column 7 is the flight path angle

at EI. Cases 26 - 30 have high burn times. The high burn times are undesirable but

necessary to place the vehicle on an orbit that would achieve desired EI conditions. The

impulsive results shown in Section 4.1 hold for elliptic orbits as well. Therefore, for a

given set of EI conditions, there exists an altitude for an initial elliptic orbit, such that

for any higher altitude orbit no impulsive deorbit solution exists. Therefore, the vehicle

must burn longer to place the vehicle on the correct transfer orbit. As stated earlier,
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the Space Shuttle does not have the capacity to carry enough fuel to complete such long

burns.

Cases 28 and 30 fail, which is why the EI flight path angles are not within the range

of acceptable flight path angles allowed by the piecewise formulations. Figure 6.1 shows

the thrust angle during the burn for cases 26 - 30. Cases 26, 27, 28 and 29 all have a

sharp increase or decrease in thrust angle during the burn. For cases 28 and 29, this

sharp increase resembles a discontinuity. The thrust vector is not a continuous function

so it might be such that a discontinuity is part of the optimal solution of the problem.

Cases 26 and 27 have a sharp decline but is not of the discontinuous nature. The thrust

angle of case 30 spans over 700 degrees over 700 seconds of flight during the final segment

of flight. This means the vehicle does a full rotation more than once around its center

of mass during flight. There is no obvious reason for this so further study must occur.

Cases 21 - 25 are shown in Figure 6.2. The altitude for the burn-coast solution is shown

in Figure 6.3. The solution for cases 21 - 24, 27, and 28 all reach altitudes below 100

km and with the exception of 27, all go below the Earth’s atmosphere.

The solutions follow the expected trend of burn time increasing as eccentricity in-

creases for a given initial orbit perigee altitude. The long burn times are undesirable.

The cases with long final coast time are also undesirable because the vehicle may coast

along the transfer orbit within the Earth’s atmosphere. To address these problems, two

burn solutions with and without final coast are explored.

6.2 Two Burn Solutions for Elliptic Orbit

The BCBC solution for cases 1 - 30 are shown in Table 6.2. Column 1 is the case

number, column 2 is the manual coast time, and columns three, four, five, and six list

the first burn time, intermediate coast time, final burn time, and final coast time all in

seconds. Columns 7 and 8 are the equivalent impulses of the corresponding burns times,
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Table 6.1 Results of burn-coast solution with terminal constraints set 3
(Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) and con-
strained crossrange

Case M CT (s) BT (s) CT (s) ∆V (m/s) CR at EI FPA at EI (deg)

1 25146.3347 180.0000 1415.0457 100.6844 0.1631 -0.8050
2 27698.9897 270.0000 3005.1861 152.3097 0.1077 -0.8050
3 80736.0997 389.0000 3110.6389 221.6373 0.0766 -0.8050
4 23090.5682 537.0000 8084.6529 309.8202 0.1549 -1.1553
5 79742.3369 643.0000 3110.7809 374.7656 0.1239 -0.8050
6 25776.4056 201.0000 1399.2120 112.3513 0.1225 -0.8050
7 78039.9765 433.0000 6281.7065 247.3438 0.0435 -1.6000
8 81581.2544 443.0000 2767.8107 253.5345 0.0411 -0.8050
9 23576.7649 690.0000 7005.5142 404.5451 0.1268 -1.6000
10 80354.7688 798.0000 2774.9952 472.8914 0.0963 -0.8050
11 83253.4752 241.0000 2479.9063 135.2225 0.0347 -0.8050
12 79241.4042 403.0000 6204.8221 229.7801 0.0267 -1.6000
13 22937.6181 520.0000 7246.2512 299.9801 0.0904 -1.6000
14 23663.7408 682.0000 6983.7298 399.3046 0.1304 -1.6000
15 80970.4221 1009.0000 2247.8618 610.8415 0.0772 -0.8050
16 26619.3788 437.0000 1508.1091 250.0447 0.0465 -1.5604
17 80785.9879 464.0000 1946.8945 265.9536 0.1431 -0.8050
18 22633.7754 580.0000 6402.6443 335.9912 0.0208 -1.4595
19 23491.4931 773.0000 7053.7352 456.4748 0.1297 -1.6000
20 23997.3212 931.0000 908.6664 559.0871 0.2209 -1.0792
21 78696.1411 553.0000 6524.7574 319.8928 0.0219 -1.6000
22 22232.3959 677.0000 6872.1479 396.4816 0.0314 -1.6000
23 22900.6815 688.0000 6404.5749 402.8619 0.0449 -1.6000
24 23820.0187 849.0000 7016.4790 505.8027 0.1532 -1.6001
25 24472.8361 877.0000 1095.2604 523.6698 0.1820 -1.6001
26 80349.0611 1350.0000 2793.5441 848.1597 0.0602 -0.8050
27 23000.8210 1782.0000 4439.5242 1177.4774 0.0042 -0.8049
28 23566.7292 1502.0000 4620.3165 959.6202 0.0254 -3.7738
29 24199.3788 1336.0000 1408.2171 837.5472 0.1502 -1.6001
30 82096.2584 2456.0000 4637.7829 1774.6432 0.2402 -12.7632
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Figure 6.1 Thrust angle for cases 26 - 30 with a burn-coast solution and ter-
minal conditions set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80),
and (3.54)) and constrained crossrange.
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Figure 6.2 Thrust angle for cases 21 - 25 with a burn-coast solution and ter-
minal conditions set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80),
and (3.54)) and constrained crossrange.
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Figure 6.3 Altitude for burn-coast solution for cases 21 - 29 with terminal
constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and
(3.54)) and constrained crossrange
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Table 6.2 Results for burn-coast-burn-coast solution with terminal con-
straints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and
(3.54)) and constrained crossrange

Case M CT (s) BT 1(s) CT1 (s) BT 2 (s) CT2 (s) ∆V 1 (m/s) ∆V 2 (m/s) CR at EI FPA at EI (deg)

1 22896.33 51.00 2480.46 77.00 5743.10 28.5242 43.1013 0.1252 -0.8050
2 22943.99 146.00 3271.60 165.00 16.50 81.2606 94.7438 0.1758 -0.8050
3 27838.42 293.00 1490.32 98.00 2996.33 165.4367 57.2858 0.2191 -0.8050
4 22470.57 461.00 1093.46 170.00 2864.35 264.1772 103.6291 0.1427 -0.8050
5 26915.58 140.00 2401.15 720.00 4505.09 78.2369 434.6249 0.3445 -0.8280
6 22516.41 97.00 2767.54 189.00 1304.86 53.8243 107.4232 0.1545 -0.8050
7 22956.92 207.00 3092.77 149.00 429.39 116.1210 86.1174 0.1571 -0.8050
8 20457.21 70.00 2049.52 435.00 3467.78 38.9415 251.8149 0.1798 -0.8049
9 22761.76 575.00 1465.89 205.00 1710.38 333.4032 128.0728 0.1645 -1.0427
10 23793.69 419.00 871.05 368.00 7152.14 239.3203 226.6542 0.2119 -1.6000
11 22522.42 112.00 2599.14 206.00 950.61 62.4124 117.9818 0.1855 -0.8050
12 79641.40 245.00 2236.69 138.00 2200.87 137.7520 80.7202 0.0621 -0.8050
13 20377.62 158.00 1795.45 451.00 4811.80 88.0058 266.2738 0.1086 -0.8049
14 23188.74 586.00 1309.26 253.00 6233.73 339.6230 159.6272 0.1458 -1.6000
15 22647.61 222.00 1032.95 881.00 4163.19 124.3312 550.0466 0.0220 -0.8049
16 22649.38 118.00 2806.56 164.00 1147.21 65.5832 93.5662 0.1539 -0.8050
17 24045.69 138.00 3130.16 291.00 372.09 77.1059 168.5911 0.0840 -0.8050
18 22308.78 307.00 988.43 333.00 3794.25 173.7916 199.7221 0.0997 -0.8049
19 22421.49 243.00 1024.36 550.00 4489.48 136.7078 333.4073 0.0359 -0.8049
20 22997.32 263.00 964.58 870.00 4282.88 148.3514 547.4708 0.0054 -0.8050
21 22892.27 138.00 2891.94 193.00 1161.94 76.9371 110.6104 0.1288 -0.8050
22 22747.40 278.00 3137.59 172.00 1676.84 156.6483 101.0481 0.0818 -0.8050
23 23495.68 402.00 3353.65 183.00 1756.63 229.4313 110.1978 0.0062 -0.8050
24 24575.02 557.00 3163.68 241.00 1361.71 322.1709 150.4837 0.0389 -0.8051
25 25167.84 622.00 3199.58 187.00 541.97 362.2082 118.1995 0.0274 -0.8050
26 23400.86 170.00 3120.28 266.00 1302.68 95.1618 154.4127 0.0659 -0.8050
27 23680.82 294.00 3110.90 251.00 1196.69 165.9116 149.1019 0.0484 -0.8050
28 23801.73 487.00 3003.04 210.00 1393.50 279.5887 129.0651 0.0253 -0.8050
29 25474.38 443.00 3332.70 424.00 551.23 253.6179 263.7664 0.0598 -0.8050
30 26001.25 606.00 3308.39 324.00 600.49 352.3282 206.3903 0.0992 -0.8050

column 9 is the crossrange at EI and column 10 is the flight path angle at EI.

Figures 6.4 - 6.5 show the thrust angle for the first and second burn for cases 21 -

30 with a BCBC solution. Figure 6.6 shows the altitude for cases 21 - 30 with a BCBC

solution. Using a BCBC solution, the altitude of the solution never goes below 120 km.

For the single burn cases, the thrust angles and altitude have a trend. For example,

when the vehicle travels on a transfer orbit with apogee altitude greater than the initial

orbit altitude, the thrust angle is greater than 180 degrees. With two burn maneuvers,

this type of trend is not as evident. There are no large discontinuities in the two burn

solution as there are in the one burn solution.
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Figure 6.4 Thrust angle during first burn for burn-coast-burn-coast solution
of elliptical cases 21 through 30 with terminal constraints set
3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) and
constrained crossrange
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Figure 6.5 Thrust angle during second burn for burn-coast-burn-coast so-
lution of elliptical cases 21 through 30 with terminal constraints
set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) and
constrained crossrange
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Figure 6.6 Altitude for burn-coast-burn-coast solution for cases 21 - 30 with
terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77),
(3.80), and (3.54)) and constrained crossrange
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Table 6.3 Results for burn-coast-burn solution with terminal constraints
set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54)) and
constrained crossrange

Case M CT (s) BT 1(s) CT (s) BT 2 (s) ∆V 1 (m/s) ∆V 2 (m/s) CR at EI FPA at EI (deg)

1 27586.33 130.00 2723.99 11.98 72.6253 6.7374 0.0744 -0.8053
2 22853.99 153.00 3154.00 143.00 85.2349 81.2616 0.1911 -0.8376
3 23518.42 390.00 3121.00 188.00 222.1091 112.7683 0.1327 -0.8051
4 24025.57 533.00 3123.00 199.00 307.4967 122.4838 0.0904 -0.8055
5 24510.58 727.00 2985.00 161.00 427.3120 103.0930 0.0582 -0.8168
6 23176.41 100.00 2825.00 191.00 55.7456 108.0645 0.1919 -0.8050
7 80719.98 98.00 3091.00 224.00 54.5837 127.3935 0.0833 -1.0790
8 23872.21 368.00 3231.00 267.00 209.0434 160.3713 0.0994 -0.8050
9 23871.76 700.00 2879.00 281.00 410.5597 181.2231 0.0999 -0.8060
10 24743.69 720.00 3211.00 211.00 423.2980 135.3416 0.0259 -0.8051
11 23767.42 101.00 2592.85 130.78 56.3993 73.9708 0.1726 -0.8051
12 23170.82 173.00 3581.00 199.00 96.5147 114.6731 0.1387 -0.8051
13 24032.62 207.00 3461.00 298.00 115.7449 174.4145 0.0827 -0.8569
14 24078.74 485.00 3202.00 150.00 278.6694 90.8443 0.0882 -0.8500
15 25337.61 593.00 3170.00 321.00 344.2286 203.1318 0.0081 -0.8207
16 23679.38 135.00 2690.00 143.00 75.2949 81.1341 0.1692 -0.8049
17 23350.69 365.00 2890.00 195.00 207.1529 116.1150 0.1594 -0.8050
18 23313.78 438.00 3436.00 135.00 250.4019 80.8555 0.1260 -0.8054
19 24566.49 592.00 2975.00 182.00 343.7622 113.6103 0.0625 -0.8053
20 25612.32 598.00 3229.00 322.00 347.0347 204.4070 0.0300 -0.8119
21 23612.27 179.00 2901.86 257.69 99.8455 149.6458 0.1497 -0.8051
22 24027.40 275.00 3007.00 241.00 155.2226 142.3145 0.1113 -0.8050
23 24135.68 313.00 3858.00 333.00 177.0156 199.4675 0.0418 -0.8052
24 24515.02 500.00 3423.00 208.00 287.8989 127.3364 0.0414 -0.8167
25 25607.84 653.00 3042.00 254.00 381.2935 161.9781 0.0170 -0.9230
26 23600.86 254.00 2715.00 163.00 143.0586 94.7081 0.1637 -0.8049
27 23820.82 369.00 2886.00 172.00 209.5250 102.5050 0.1307 -0.8088
28 24541.73 432.00 3160.00 231.00 246.8502 140.2942 0.0594 -0.8051
29 25274.38 536.00 3127.00 270.00 309.1284 167.9514 0.0052 -0.8826
30 26281.25 669.00 3109.00 337.00 391.4105 217.4034 0.0707 -0.8819

The results for the BCB solution for cases 1 - 30 are shown in Table 6.3 where

column 1 is the case number, column 2 is the manual coast time, coumns 3,4, and 5 are

the first burn time, intermediate coast time, and final burn time, columns 6 and 7 are

the equivalent impulses of the corresponding burns times, column 8 is the crossrange

distance at EI, and column 9 is the flight path angle at EI.

Table 6.4 gives a summary of the burn time and corresponding ∆V for the solution

given the different formulations for cases 1 - 30. For each case, the very initial posi-

tion before the manual coast begins is the same for the different solution formulations.

However, the manual coast between the different formulations is different. For example,
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case 1 for BCB has a manual coast time of 27586.33 seconds, BCBC has a manual coast

time of 22896.33, and BC has a manual coast time of 25146.3347 seconds. This means

that the initial position used in solving the optimal control problem is different for each

case. There is almost a 5000 second difference in manual coast between the BCBC and

BCB solution. 5000 seconds on a 250 km perigee altitude orbit with eccentricity of .04

would place the initial positions of the vehicle for the different formulations in different

positions. The problem is being solved from two different initial states, which for some

of the cases is as far as half an orbit away.

Intuition would dictate that the BCBC formulation would yield a better result in

terms of fuel expenditure because of the final coast. The results in Table 6.4 give a

different result for some cases. Column 1 is the case number, columns 2 and 3 are the

BC burn time and its corresponding ∆V , columns 4 and 5 are the BCBC burn time and

its corresponding ∆V , and columns 6 and 7 are the BCB burn time and its corresponding

∆V . For example in case 7, the BCBC has a 34 second higher burn time. In case 7, the

BCBC solution targets the second 1HAC while the BCB solution targets the first. This is

because the guidance solution could not find a BCBC solution that was within the burn

bounds and the crossrange constraint for the closest 1HAC . Therefore, the second 1HAC

was targeted. In case 6, the total burn times differ by 5 seconds. The manual coast times

differ by less than a thousand seconds for the BCB and BCBC solution formulations for

case 6. The initial position of the vehicle is not as different as for case 7 and hence the

solution is not as drastically different. One way to help with this discrepancy would be

to add an initial optimal coast to the problem but this is hard to handle numerically in

the algorithm.

Figures 6.7 - 6.12 show the trend of the BC, BCB, and BCBC solutions for a given

eccentricity and initial orbit perigee altitude for cases 1 - 30. For low perigee altitude, low

eccentricity, single BC gives the best solution. As seen in Figure 6.7 the BC formulation

gives the lowest ∆V solution of the three solution formulations. For all three cases, as
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Table 6.4 ∆V and Burn Time for burn-coast, burn-coast-burn-coast, and
burn-coast-burn solutions for cases 1-30 with constrained cross-
range and terminal conditions set 3 (Eqs. (3.66)–(3.68), (3.76),
(3.77), (3.80), and (3.54))

Case BC BT (sec) BC ∆V BCBC BT (sec) BCBC ∆V BCB BT (sec) BCB ∆V

1 180.0000 100.6844 128.0000 71.6255 141.9766 79.3627
2 270.0000 152.3097 311.0000 176.0045 296.0000 166.4965
3 389.0000 221.6373 391.0000 222.7225 578.0000 334.8774
4 537.0000 309.8202 631.0000 367.8063 732.0000 429.9805
5 643.0000 374.7656 860.0000 512.8618 888.0000 530.4050
6 201.0000 112.3513 286.0000 161.2475 291.0000 163.8101
7 433.0000 247.3438 356.0000 202.2383 322.0000 181.9772
8 443.0000 253.5345 505.0000 290.7565 635.0000 369.4147
9 690.0000 404.5451 780.0000 461.4760 981.0000 591.7828
10 798.0000 472.8914 787.0000 465.9745 931.0000 558.6396
11 241.0000 135.2225 318.0000 180.3942 231.7845 130.3701
12 403.0000 229.7801 383.0000 218.4722 372.0000 211.1878
13 520.0000 299.9801 609.0000 354.2795 505.0000 290.1594
14 682.0000 399.3046 839.0000 499.2502 635.0000 369.5137
15 1009.0000 610.8415 1103.0000 674.3777 914.0000 547.3605
16 437.0000 250.0447 282.0000 159.1493 278.0000 156.4290
17 464.0000 265.9536 429.0000 245.6970 560.0000 323.2679
18 580.0000 335.9912 640.0000 373.5138 573.0000 331.2573
19 773.0000 456.4748 793.0000 470.1151 774.0000 457.3725
20 931.0000 559.0871 1133.0000 695.8222 920.0000 551.4417
21 553.0000 319.8928 331.0000 187.5475 436.6920 249.4912
22 677.0000 396.4816 450.0000 257.6965 516.0000 297.5371
23 688.0000 402.8619 585.0000 339.6291 646.0000 376.4831
24 849.0000 505.8027 798.0000 473.6546 708.0000 415.2354
25 877.0000 523.6698 809.0000 480.4077 907.0000 543.2716
26 1350.0000 848.1597 436.0000 249.5746 417.0000 237.7668
27 1782.0000 1177.4774 545.0000 315.0135 541.0000 312.0301
28 1502.0000 959.6202 697.0000 408.6538 663.0000 387.1444
29 1336.0000 837.5472 867.0000 517.3843 806.0000 477.0798
30 2456.0000 1774.6432 930.0000 558.7185 1006.0000 608.8139
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the eccentricity increased, the ∆V increased. This is the case for all the initial perigee

altitude cases.

Figure 6.7 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn-coast
solution for given initial perigee altitude orbit of 200 km

For the cases in Figure 6.8 where the perigee altitude is 250 km, the burn-coast-

burn-coast formulation yielded a smaller ∆V than the burn-coast-burn formulation.

As eccentricity increases the burn-coast solution offers the better solution with smaller

∆V . The single burn solution is the most appropriate way to solve the problem. For

eccentricity of .04 the two burn methods offer a better solution. This is caused by the

different coast times of the solution. The final coast of the burn-coast solution is almost

twice the coast time of the two burn solutions. Also, the burn-coast method targets a

different EI flight path angle.
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Figure 6.8 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn-coast
solution for given initial perigee altitude orbit of 250 km
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For perigee altitude of 300 km, burn-coast-burn and burn-coast solution formula-

tions offer the best results in terms of ∆V . Figure 6.9 shows an almost linear trend of

increasing ∆V for the three solution formulations. This trend shows that for increasing

eccentricity of a given initial perigee altitude, the burn time and ∆V increase. For low

eccentricities, two burn maneuver has the smaller ∆V for initial orbit perigee altitude

350 km shown in Figure 6.10. As eccentricity increases, the BC and BCB solutions ap-

pear to converge around the same total ∆V . The BCBC solution gives the worst result

in terms of ∆V as eccentricity increases.

Figure 6.9 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn-coast
solution for given initial perigee altitude orbit of 300 km

For the cases with initial orbit perigee altitude of 400 and 500 km, the two burn

maneuvers give the best solution in terms of minimizing burn time and total burn time.
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Figure 6.10 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn–
coast solution for given initial perigee altitude orbit of 350 km
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There is no impulsive solution for initial perigee altitude orbits of 400 km and higher

that meet the required EI conditions. Specifically, no Keplerian orbit exists that the

vehicle could travel on to meet the required EI conditions. Hence, a two burn maneuver

is required for the vehicle to achieve EI conditions. The results are shown in Figures 6.11

and 6.12. For 400 km perigee altitude initial orbit BCBC gave the best result. As the

eccentricity increased, all the solution formulations converged with BC giving the best

solution for an eccentricity of .10. For a 500 km perigee altitude initial orbit the two

burn maneuvers were the more optimal. The BC maneuver has very long burn times for

the elliptic orbits with such a high perigee altitude, which is undesirable. The two burn

maneuvers have much smaller burn times that are more desirable.

Figure 6.11 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn–
coast solution for given initial perigee altitude orbit of 400 km
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Figure 6.12 ∆V for burn-coast, burn-coast-burn, and burn-coast-burn–
coast solution for given initial perigee altitude orbit of 500 km
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6.3 Summary

The major findings in this chapter are as follows:

• For low altitude elliptic orbits, the single burn coast solution formulation provided

the best results in terms of minimizing ∆V .

• As eccentricity increases for a given initial orbit perigee altitude, the burn time

increases for both the single and two burn maneuvers.

• There does not exist an impulsive solution for initial orbits with perigee altitude

greater than 360 km. The impulsive solution is determined by the EI conditions.

Increased burn times are required to place the vehicle on orbit that meets EI

conditions.

• For high altitude elliptic orbits (360 km perigee altitude and above) the two burn

maneuvers provide the best results in terms of minimizing ∆V . Two burn maneu-

vers offer most efficient method of placing vehicle on correct transfer orbit that

meets EI conditions.

• The burn coast burn solution offered the best results for the two burn maneuvers.
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CHAPTER 7. J2 Gravitational Term

The previous chapters solved the guidance problem assuming Keplerian motion.

From Ref. [2] and the completed numerical survey in chapter 2, Earth’s oblateness

and more specifically the J2 gravitational term has an effect on the EI conditions. This

chapter explores the effect of the J2 gravitational term on the guidance solution. In

Section 1, the J2 gravitational term is added to the simulation but not added to the

guidance solution process. The guidance solution is solved assuming Keplerian motion.

Section 2 presents results with the J2 gravitational term added to both the guidance

solution and simulation.

7.1 J2 Gravitational Term in Simulation

To give an overview of the effect, Table 7.1 shows the EI results for the cases listed

with the J2 gravitational term added as part of the simulation. The J2 gravitational term

is not included as part of the vacuum solution to the guidance problem. The guidance

problem is solved using Keplerian motion. In Table 7.1 column 1 is the circular orbit

case number, column 2 is the final coast time of the BC solution, EI flight path angle is

presented in column 3, the percent error of EI flight path angle is column 4, column 5 is

the EI altitude, column 6 is the percent error for EI altitude, and columns 7 and 8 are

the EI Velocity and the EI velocity percent error.

The J2 gravitational term has the largest effect on the flight path angle and altitude

at EI. At the end of the burn, the vehicle coasts a specified time to EI. This specified
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Table 7.1 Final EI conditions with J2 gravitational term in simulation and
terminal constraints set 5 (Eqs. (3.90)–(3.97) and (3.54))

Case Final CT (sec) EI fpa (deg) FPA Error EI Altitude (m) Alt Error EI Velocity (m/s) Vel Error

1 3064.5342 -1.0140 1.3970 126434.5 5.3621 7871.7575 0.0983
6 5892.3993 -0.9742 2.5760 122165.8 1.8048 7880.8637 0.0173
11 6387.3637 -0.9762 2.3820 124163.0 3.4692 7881.1275 0.0207
16 6942.3112 -0.9974 0.2640 123704.3 3.0869 7878.4122 0.0138
21 5493.5075 -1.0116 1.1590 118842.7 0.9644 7881.6251 0.0270
22 1911.3160 -1.0284 2.8410 109717.7 8.5686 7889.6529 0.1289
23 3623.0013 -1.0205 2.0450 128013.6 6.6780 7875.6487 0.0489
24 1091.3188 -0.9516 4.8440 124699.3 3.9161 7876.8316 0.0339
25 4178.5907 -0.9415 5.8550 113901.7 5.0819 7881.0422 0.0196
26 3921.9833 -0.9737 2.6300 115129.0 4.0592 7880.2885 0.0100
27 1023.3733 -1.0108 1.0800 118421.7 1.3153 7875.9986 0.0444
28 1177.9367 -0.9538 4.6160 125141.6 4.2847 7876.7901 0.0344

time is solved for as part of the guidance solution, which assumes Keplerian motions.

The final guidance command is given at the end of the burn. The final coast is then

simulated using J2 equations of motion (Eqs. (3.23)–(3.24)). Since the final coast time

was solved for assuming Keplerian motion and the simulation uses J2 motion and the

simulation stops at the end of the specified final coast time, the EI altitude maybe

different from the specified 120 km.

The largest percent error in flight path angle is for case 25. This case has both a

high initial orbit altitude and a long final coast time. Cases 6, 11, and 16 have long final

coast times as well. The change in altitude of cases 6, 11, and 16 is not as large as the

change in altitude of case 25 during the final coast. The change in altitude and the long

coast time for the final coast lead to the large percent error for the flight path angle at

EI.

Allowing for the variable formulation of flight path angle and velocity at EI, Table

7.2 shows the results of the same cases presented in Table 7.1 with terminal constraints

case 3. Once again, the J2 gravitational term is added in the simulation but not in the

solution of the guidance problem. Column 1 is the circular orbit case number, column 2

is the final coast time, column 3 is the EI flight path angle, column 4 is the EI altitude,
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Table 7.2 Final EI conditions with J2 gravitational term in simulation and
terminal constraints set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77),
(3.80), and (3.54)) for initial circular orbit cases.

Case Final CT (sec) EI fpa (deg) EI Altitude (m) EI Velocity (m/s)

1 3272.8124 -0.8162 126871.2 7878.2795
6 8263.0614 -0.8235 127249.5 7875.8982
11 7888.0277 -0.8306 126648.8 7877.4799
16 3122.1151 -1.0265 148026.7 7881.3677
21 6527.9494 -1.5730 125884.3 7863.5606
22 2824.5906 -0.7712 112857.8 7894.3709
23 3365.6895 -1.6086 118895.4 7863.0860
24 627.7417 -1.6442 117848.2 7862.1676
25 730.0324 -1.5639 122078.7 7864.3665
26 217.0231 -0.8265 119675.3 7885.6104
27 5207.5385 -0.8174 120632.2 7883.9092
28 3961.4512 -1.4844 123167.1 7868.1529

and column 5 is the EI velocity. There is no percent error presented in Table 7.2.

Allowing for variable formulations (Eqs. (3.102) and (3.103)) makes the use of percent

errors invalid. In Table 7.2 the same difference in altitude at EI as Table 7.1 is shown.

The cases with flight path angle not within the alloted range are cases 22, 23, and 24.

Case 22 is below the variable flight path angle range by .0338 degrees and cases 23 and

24 are above the variable flight path angle range by .0086 degrees and .0442 degrees

respectively.

Table 2.2 gives the final flight path angle at EI for a vehicle coasting from the given

altitude to the EI altitude of 120 km. The final fight path angles with J2 gravitational

term in Table 2.2 differ from the flight path angles with Keplerian motion by up to

30 percent. The final path angle can differ by up to 30 percent in Table 2.2 but is

still within the bounds of the Shuttle’s variable formulation given in Eqs. (3.102) and

(3.103). Using a variable formulation allows for flexibility in the flight path angle at EI.

This leads to an ease in handling the J2 term and it’s effect on flight path angle.

Eliminating the final coast and ending the deorbit flight with a burn counters the

effect of the J2 gravitational term. In Table 7.3 the final EI values are shown for circular

cases 21 - 28 with a BCB solution and terminal constraints set 3. Column 1 is the circular
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Table 7.3 Final EI conditions for burn-coast-burn solution with J2 gravi-
tational term in simulation and terminal constraints set 3 (Eqs.
(3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))

Case EI fpa (deg) EI Altitude (m) EI Velocity (m/s)

21 -0.8061 119999.6 7884.8917
22 -0.7986 120191.9 7884.9944
23 -1.6135 121255.3 7865.7466
24 -0.8022 120193.4 7885.6891
25 -0.8184 120191.9 7884.5446
26 -1.6350 119515.2 7864.1597
27 -1.6013 119987.0 7863.8323
28 -1.6046 119990.9 7864.2011

orbit case number, column 2 is the EI flight path angle, column 3 is the EI altitude,

and column 4 is the EI velocity. Cases 22, 23, 26, 27, and 28 are outside of the range of

flight path angle by less than 3 percent. Because the guidance problem is solved using

a closed loop simulation, the guidance command is updated every second of flight. The

final burn compensates for the any change in EI conditions the J2 gravitational term

in the simulation causes. Any discrepancy caused by the simulation is compensated for

during the next second of flight when the guidance solution is solved again.

7.2 J2 Gravitational Term in Guidance Solution and

Simulation

The results from adding the J2 gravitational term to the vacuum solution as well

as the simulation is shown in Table 7.4. Column 1 is the circular orbit case number,

column 2 is the final coast time, column 3 is the EI flight path angle, column 4 is the EI

altitude, and column 5 is the EI velocity. The flight path angle at EI for case 1, 21, 22,

27, and 28 are outside the range of flight path angle at EI. Case 1 is out of the range the

most by .102 degrees. The other cases are outside the range by less than .005 degrees.

The results in Table 7.4 and 7.2 are not the same. Adding the J2 gravitational

term to the guidance solution changes the problem for the given case and therefore the
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Table 7.4 Final EI conditions for burn-coast solution with J2 gravitational
term in simulation and guidance solution and terminal constraints
set 3 (Eqs. (3.66)–(3.68), (3.76), (3.77), (3.80), and (3.54))

Case Final Coast (sec) EI fpa (deg) EI Altitude (m) EI Velocity (m/s)

1 7381.4768 -0.7030 120286.5 7846.6990
6 2109.1078 -0.8101 121604.1 7882.2580
11 2474.8854 -0.8052 120066.2 7884.8125
16 6505.9747 -1.6025 121582.0 7861.9670
21 6524.0645 -0.8016 119691.3 7881.9015
22 6828.8401 -0.8006 119540.0 7885.3638
23 6459.0238 -0.8090 120459.1 7884.3694
24 4399.5295 -0.9036 120507.5 7881.6727
25 6005.2263 -0.8054 120080.0 7884.7924
26 4005.5745 -1.4518 120621.5 7867.1870
27 3221.8767 -1.6042 121345.1 7862.2644
28 111.8199 -0.8033 119844.3 7885.1003

solution will be different. The most striking difference is in the altitude. Adding the

J2 gravitational term to the solution and simulation allowed the vehicle the required

altitude. The EI altitude results for the cases with J2 gravitational term only in the

simulation differ greatly from the required altitude.

Besides the solution meeting the altitude requirements, the other main difference in

adding the J2 gravitational term to the guidance solution is the time it takes for the

solution to be solved by the computer. Solving for the position and velocity of the vehicle

with the J2 gravitational term requires numerically integrating the equations of motion.

Numerical integration is more computational time intensive. Goodyear’s method, which

is used for modeling Keplerian motion, solves for the position and velocity of the vehicle

using an analytical solution. This method is much faster computationally. The partial

derivatives of the states are found using an analytical method using Goodyear’s method.

The partial derivatives with the J2 gravitational term included must be found using a

finite difference method. This adds to the computation time of the solution. The time

required to complete the solution is a matter of minutes with the J2 gravitational term

added to the solution. Without the J2 gravitational term, the computation time is a

matter of seconds. Adding the J2 gravitational term to the simulation does not affect
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the computational time.
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CHAPTER 8. Conclusion and Future Work

This work solved a optimal deorbit guidance problem given initial orbit and vehicle

parameters as inputs. Using the optimal control method, the engine on time, engine

off time as well as the direction of the thrust vector is solved for a variety of circular

and elliptic initial orbits. For low altitude circular orbits, the single finite time burn

was the optimal solution type. The burn time decreased as initial altitude increased

till an altitude of 340 km. The transfer orbit for the deorbit maneuver is determined

by the EI conditions. There is a specified transfer orbit apogee altitude for a given set

of EI conditions. For initial orbits with altitudes higher than the transfer orbit apogee

altitude, a longer burn time is required to place the vehicle on the required transfer

orbit. For Shuttle type vehicles this initial orbit altitude is shown to be around 370 km.

For orbits with higher altitudes, the two burn maneuvers were shown to provide lower

total burn time solutions.

For low perigee altitude initial orbits the single finite time burn provides the most

optimal solution in terms of minimizing burn time. The optimal deorbit point for initial

elliptic orbits is not at apogee and is closer to perigee. If the velocity at EI is uncon-

strained, then the optimal deorbit point is at apogee. There does not exist an impulsive

solution for the higher altitude cases given the desired set of EI conditions. Hence,

for higher perigee altitude initial orbits, two burns maneuvers are shown to provide a

smaller total burn time than the single burn. As the eccentricity of the initial orbits

increases for a given perigee altitude, the burn time increases. The two burn maneuvers

are better for higher perigee altitude initial orbits but not for increasing eccentricity for
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a given initial perigee altitude. This is because the perigee altitude of the orbit is still

low enough to place the vehicle on the required transfer orbit.

Adding the J2 term does have an impact on the EI flight path angle. For fixed EI

flight path angle, adding the J2 term to the simulation yields max error of 5 percent.

The altitude is affected by the J2 term. Adding the J2 term to the guidance solution

and the simulation increases the computation time.

There are a few different areas that need improvement. The first is the initial guess

needed to achieve the first initial solution. The current initial guess sets the thrust vector

as being at 180 degrees from the velocity vector. As shown in chapters 4, 5, and 6, the

thrust angle is almost never a constant 180 degrees but there is a pattern the thrust

angles follow given an initial orbit altitude and eccentricity. Setting the initial pV to

reflect a thrust vector that follows the pattern shown by the results and calculating the

corresponding pr vector should help in finding an initial solution. Also, the method

presented in [27] should be explored to see if that method helps in the finding of the

initial solution.

Another area for improvement is in the numerical integration of the solution of the

burn arcs. Currently, a quadrature rule is used. This is fine for small burn times

of a couple hundred seconds. The burn times significantly increase as altitude and

eccentricity increases. A better numerical integration technique should be implemented.

Adding the J2 term via numerical integration in the guidance solution more than doubles

the computation time. Using a different method, such as an approximate analytical one,

would greatly improve the computation time. This should be explored further.

An analytical method for determining the optimal number of finite time burns for a

deorbit maneuver would be most useful in solving the autonomous optimal deorbit guid-

ance problem. There currently exists methods for determining the number of required

impulsive burns given initial orbit parameters for a fixed time problem. However, to

solve for the number of optimal finite time burns for a free final time deorbit problem
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would be an epic accomplishment. Whether or not more than two burns would yield

better results needs to be studied further.
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APPENDIX A. Optimal Control Problem

Optimal Control Theory provides the method by which to solve the deorbit guidance

problem such that the minimum fuel amount is optimized [17], [18]. The following

section gives a brief overview of the problem setup.

Let the dynamic system be defined by

ẋ = f(x,u, t) (A.1)

with given initial condition x(t0) = x0 where x ∈ Rn is the state vector and u ∈ Rm

is the control vector. The terminal condition of the system is defined in k equations

(0 ≤ k ≤ n)

ψ(xf ) =


ψ1(xf )

...

ψk(xf )

 (A.2)

where xf is the state at final time tf . The performance index is defined as

J = φ(xf , tf ) +
∫ tf

t0
L(x,u)dt (A.3)

where φ and L are scalar functions. The optimal control problem is to find the control

profile u∗(t), t0 ≤ t ≤ tf such that u∗(t) and x∗(t) satisfy the terminal constraints and

state equations while minimizing the performance index.

To help find the optimal solution, a set of necessary conditions that x∗(t) and u∗(t)

must satisfy are developed. The first condition is a scalar function called the Hamiltonian

H = pT f(x,u, t)− L(x,u) (A.4)
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=
n∑
i=1

pifi(x,u, t)− L(x,u) (A.5)

where p is an n-dimensional time dependent vector called the costate vector, which must

satisfy the costate equation

ṗ = −∂H
∂x

= −∂fT

∂x
p +

∂L

∂x
. (A.6)

The terminal condition for the costate vector are

pf =
∂φ

∂xf
+
∂ψT

∂xf
ν, (A.7)

which is referred to as the transversality condition. ν is a constant multiplier that is

determined as part of the solution of the problem. The optimal solution {x∗,u∗} must

satisfy the Pontryagin Maximum Principle:

H(p,x∗,u∗, t) = max
u

H(p,x∗,u, t). (A.8)

This means that any t ∈ [t0, tf ], the Hamiltonian attains it’s maximum value with respect

to the control with x fixed at x∗(t) and p determined from the necessary conditions.

When u is unconstrained, the Maximum Principle gives rise to the stationary con-

dition

∂H(p,x∗,u∗, t)

∂u
= 0. (A.9)

For free final time problems, an additional transversality condition is

H(tf ) =
∂φ

∂tf
(A.10)

and if φ is not a function of time, then

H(tf ) = 0. (A.11)

In conclusion, there are 2n variables in the state and costate vectors that are governed

by the state and costate equations. The initial conditions of the state are given. The
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initial conditions of the costate are unknown and must be solved as part of the problem, n

unknowns. The constant multipliers ν are unknown and add another k unknowns to the

problem. For a free final time problem tf is unknown and must also be solved for. This

gives the total number of unknowns as n+ k + 1. These unknowns are determined and

governed by A.10, A.7, and A.2. The optimal control is determined by the optimality

condition A.8. Once the optimal control is determined, the state is found by the solving

the state equations.
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APPENDIX B. Primer Vector

One of the key parts of space flight is the primer vector. This section gives the

definition of the primer vector and proof that the direction of the thrust is in the same

direction of the primer vector for optimal space flight based on the work of [20].

Given the 3 DOF point mass equations of vacuum space

ṙ = V (B.1)

V̇ = g(r) +
T1T
m(t)

(B.2)

ṁ = − T

g0Isp
(B.3)

with constraint

|1T | = 1. (B.4)

Construct the Lagrange equation

F = −pTr V − pTV (g(r) +
T1T
m(t)

) + pm
T

g0Isp
+ µ(|1T | − 1) (B.5)

where pr, pV , pm, and µ are unknown multipliers. The necessary conditions are

ṗV = −pr (B.6)

ṗr = −pTV (
∂g(r)

∂r
) (B.7)

˙pm =
T

m2(t)
pTV 1T (B.8)

0 = − T

m(t)
pV + 2µ1T (B.9)

and eliminating pr gives

p̈V = −pTV (
∂g(r)

∂r
). (B.10)
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Define the primer vector pV = p. Assuming the mass and µ are equal to zero, B.9

implies pV and 1T are in the same direction. If the mass is zero, 1T is indeterminate

and if µ is zero, pv vanishes. Using Weierstrass’s Condition requires every point on the

trajectory to satisfy

(
1

m(t)
pTV 1T −

pm
g0Isp

)T ≥ (
1

m(t)
pTV 1∗T −

pm
g0Isp

)T ∗ (B.11)

for all possible values of 1∗T and m∗. Over a zero thrust arc

pm ≥
T

m(t)
pTV 1∗T . (B.12)

pTV 1∗T achieves its maximum value when 1∗T is aligned with the primer vector and its

value is the magnitude of the primer vector. This gives the necessary condition

pm ≥
T

m(t)
p (B.13)

where p is the magnitude of the primer vector. Over a maximum thrust arc T ∗ = T

where T is maximum value of thrust and applying this to the Weierstrass Condition

requires

pTV 1T ≥ pTV 1∗T (B.14)

Taking 1∗T = 1T and T ∗ ≤ T yields

pm ≤
T

m(t)
pTV 1∗T (B.15)

Equations B.14 and B.15 ensure the Weierstrass Condition. B.14 will be satisfied for all

1∗T if and only if pTV 1T takes its maximum value with respect to variations of 1T . This

implies the direction of the primer vector and thrust are identical. Thus

1T =
pV
|pV |

(B.16)
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APPENDIX C. Analytical Multiple Shooting Algorithm

This algorithm description is based off description in Refs. [26] and [28]. Placing

nodes at the junction points of the arcs in the trajectory, the multiple shooting method

enhances the robustness of the solution method.

Let N be the number of arcs. The number of nodes added to the problem is N − 1.

Figure C.1 shows the setup of these arcs and nodes.

Figure C.1 Multiple Shooting Method for N Arc Problem

The addition of the nodes to the problem increases the number of unknowns by N−1.
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The number of unknowns to be solved are

z = (p0,x1,p1, τ1, . . . ,xi,pi, τi, . . . ,xN−1,pN−1, τN−1, τf ), z ∈ R13(N−1)+7 (C.1)

where p0 is the initial costate, pi is the costate and xi is the state at nodes N − 1, τi is

the time at the N − 1 nodes, and τf is the final time. With the addition of the nodes,

new constraints are needed to solve the problem. These constraints are in the form of

equality constraints and take the following form:

Φ(τN − τN−1)pN−1 − p+
N = 0 (C.2)

Φ(τN − τN−1)xN−1 + Γ(τN)I(τN , τN−1)− x+
N = 0 (C.3)

Ψ(τN − τN−1)xN−1 − x+
N = 0 (C.4)

for all N . Eqn. (C.2) ensures that the costate solution at the previous node N − 1

propagated in time equals the guessed solution at node N . Eqn. (C.3) ensures the same

for the state along the burn arcs and eqn. (C.4) ensures the same for the state along

the coast arc. The final constraints are the terminal constraints in terms of the final

position and velocity

sk(xf ,pf ) = 0 (C.5)

for k = 1, . . . , 6. The final constraint is the free final time constraint

H(τf ) = 0. (C.6)

The multiple shooting method is now reduced to a rootfinding problem. Powells

Hybrid Dogleg method is used to solve for the roots of the problem.
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APPENDIX D. Thrust Angle

The thrust angle is the angle between the velocity vector and the thrust vector and

is only applicable during burn times. The thrust angle, ΘTA, is found as follows

ΘTA = arccos(1T ·V). (D.1)

To determine when the thrust angle is greater than 180 degrees is necessary. It is done

as follows. First compute the angular momentum vector for each second of the burn

flight

h = r×V. (D.2)

Define a vector in the same plane as velocity and position vector as follows

n = V × h. (D.3)

Figure D.1 gives a graphical representation of n in reference to V and r. If the dot

product of n and 1T is greater than zero, the thrust angle is less than 180 degrees and if

the dot product of n and 1T is less than zero, the angle is greater than 180 degrees. For

example, Figure D.2 shows a velocity, thrust vector setup with a thrust angle less than

180 and Figure D.3 shows a velocity, thrust vector setup with a thrust angle greater

than 180.
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Figure D.1 Thrust angle with reference to velocity and position vectors.

Figure D.2 Sample thrust and velocity vector setup with thrust angle less
than 180 degrees.
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Figure D.3 Sample thrust and velocity vector setup with thrust angle
greater than 180 degrees.
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